
LEGO® MindStorms Scout

Software Developers Kit

User Guide & Reference

User Guide & Reference Scout SDK

November 1999 Page 2 of 68

 Foreword

At LEGO, we believe that imagination is important to the world. For decades, the LEGO construction materials have been
a means for people of all ages to express creativity and make discoveries of their own. The addition of LEGO
programmable bricks brings a whole new dimension to construction.

The LEGO programmable bricks are microcomputers, which makes it possible to add functions or behavior to physical
creations made by LEGO pieces. The functions or behavior are controlled by means of programming.

LEGO has launched a new programmable brick: the Scout™ of LEGO® MINDSTORMS™ Robotics Discovery
System™. The programming software codes of this product have deliberately been designed to be easy to use - yet
versatile and powerful in function. This has been important to enable kids to use the new technology for creation of their
own personally meaningful inventions.

This technical reference guide is published to allow more creative freedom in the programming for more experienced
users. The technical reference guide documents how the Scout™ can be programmed by means of LEGO Assembly
programs. We hope that the release of this document will inspire even more people to develop imaginative applications of
the Scout™.

We kindly ask you to read the License Agreement and Warranty Disclaimer below before using this document.

We wish you good luck with development of creative applications.

LEGO - just imagine...

User Guide & Reference Scout SDK

November 1999 Page 3 of 68

 SOFTWARE DEVELOPER KIT LICENSE AGREEMENT
AND WARRANTY DISCLAIMER

License for the Software included in the LEGO MINDSTORMS Software Developer Kit (hereinafter
referred to as the Software) from the LEGO Group.

 IMPORTANT -- READ CAREFULLY: By using the information contained in this document you agree
to be and are hereby bound by the terms of this License Agreement. If you do not agree to
the terms of this Agreement, do not use the information contained in this document.

I. GRANT OF LICENSE:

The LEGO Group and its suppliers and licensors (hereinafter referred to as LEGO) hereby
grant you a non-exclusive, non-commercial license to use the Software subject to the
following terms:

You may: (i) use the Software only to develop applications for the LEGO
MINDSTORMS Scout;

(ii) the applications developed by means of the Software or parts hereof
shall only be used for purposes that neither directly nor indirectly
have any commercial implications;

You may not:

(i) permit other individuals to use the Software except under the terms
listed above;

(ii) modify, translate, reverse engineer, decompile, disassemble (except
to the extent that this restriction is expressly prohibited by law)
or create derivative works based upon the Software;

(iii) resell, rent, lease, transfer, or otherwise transfer rights to the
Software; or

(v) remove any proprietary notices or labels on the Software.

II. ENHANCEMENTS OR UP-DATES:

This license does not grant you any right to any enhancement or up-date.

III. TITLE:

Title, ownership, rights, and intellectual property rights in and to the Software shall
remain with the LEGO Group. The Software is protected by national copyright laws and
international copyright treaties. The communication protocol is protected by a pending
patent application.

Title, ownership rights and intellectual property rights in and to the content accessed
through the Software including any content contained in the Software media demonstration
files is the property of the applicable content owner and may be protected by applicable
copyright or other law. This license gives you no rights to such content.

LEGO, the LEGO logo, the LEGO Brick and LEGO MINDSTORMS are some of the trademarks belonging
exclusively to the LEGO Group.

If you want to learn more about how to use trademarks and other proprietary rights belonging
to the LEGO Group please visit our web site: http://www.lego.com.

All other trademarks mentioned in this document are the property of their respective owners.

User Guide & Reference Scout SDK

November 1999 Page 4 of 68

IV. DISCLAIMER OF WARRANTY:

THE SOFTWARE IS PROVIDED FOR FREE WITHOUT ANY KIND OF MAINTAINANCE OR SUPPORT.

THE SOFTWARE IS PROVIDED AS IS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT
PERMITTED BY APPLICABLE LAW, THE LEGO GROUP FURTHER DISCLAIMS ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT. THE ENTIRE RISK ARISING OUT OF THE USE OR PERFORMANCE OF THE
SOFTWARE OR APPLICATIONS DEVELOPED BY MEANS OF THE SOFTWARE REMAINS WITH YOU. TO THE MAXIMUM
EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL THE LEGO GROUP OR ITS SUPPLIERS BE
LIABLE FOR ANY CONSEQUENTIAL, INCIDENTAL, DIRECT, INDIRECT, SPECIAL, PUNITIVE, OR OTHER
DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) ARISING OUT OF
THIS AGREEMENT OR THE USE OF OR INABILITY TO USE THE PRODUCT, EVEN IF THE LEGO GROUP HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME STATES/JURISDICTIONS DO NOT
ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE
ABOVE LIMITATION MAY NOT APPLY TO YOU.

V. TERMINATION:

This license shall terminate automatically if you fail to comply with the limitations
described in this Agreement. No notice shall be required from the LEGO Group to effectuate
such termination. On termination you must destroy all copies of the Software and
applications developed by means of the Software.

VI. GOVERNING LAW:

This License Agreement shall be governed by the laws of the jurisdiction, where you have
permanent residency. However, if the product is bought in USA the License Agreement shall be
governed by the laws of the State of Connecticut, without regard to conflicts of law
provisions, and if the product in bought in USA you consent to the exclusive jurisdiction of
the state and federal courts sitting in the State of Connecticut. This License Agreement
will not be governed by the United Nations Convention of Contracts for the International
Sale of Goods, the application of which is hereby expressly excluded.

VII. ENTIRE AGREEMENT:

This Agreement constitutes the complete and exclusive agreement between the LEGO Group and
you with respect to the subject matter hereof and supersedes all prior oral or written
understandings, communications or agreements not specifically incorporated herein. This
Agreement may not be modified except in writing duly signed by an authorized representative
of the LEGO Group and you.

User Guide & Reference Scout SDK

November 1999 Page 5 of 68

 Table of Contents

FOREWORD ..2

SOFTWARE DEVELOPER KIT LICENSE AGREEMENT
AND WARRANTY DISCLAIMER...3

TABLE OF CONTENTS ...5

INTRODUCTION ..10

Pre-requisites..10

Document structure ...10

THE SCOUT – BRIEF DESCRIPTION...11

The Scout brick seen from the outside ...11
Output ports with LED indicators..12
Touch sensor ports with LED indicators..12
Build-in light input with LED indicator...13
VLL output ..13
IR transceiver with LED indicator ...14
Buttons: ON/OFF, Select, Change, Run ..14
LCD display...15
Sound output..15

Inside the Scout: Basic functionality ..15
Stand Alone Mode ...16
Power Mode...18
The Scout and the LEGO Remote ...19

FIRMWARE SYSTEM DESIGN - OVERVIEW ...21

The Operating System...22

The Program System ...22
System overview..22
Resources available to the user ..23
Scout events ...25
Scout access control...26
Communicating with the Scout..26

The Program Block Library ...26

INSTALLATION..27

Package content ...27

User Guide & Reference Scout SDK

November 1999 Page 6 of 68

GETTING STARTED – SCOUTDOS.EXE..28

Program arguments – example session ..28

Example programs...28
Hello World ...28
Repeat after me ..29
Watch your step ...29

GETTING STARTED – SCOUTTOOL.EXE ...31

Advanced Monitoring..31

PROGRAM SYNTAX..33

Commands..33

Labels..33

Comments...33

Structures ...33

Pre-processor directives ..34

Mixing programs with direct commands...34

Parameters ...34

Instructions/opcodes ..35
Opcode ‘absv’..35
Opcode ‘andv’ ...35
Opcode ‘boot’ ..35
Opcode ‘calls’..35
Opcode ‘chk’ ...35
Opcode ‘chkl’ ..35
Opcode ‘cntd’ ..36
Opcode ‘cnti’ ...36
Opcode ‘cnts’...36
Opcode ‘cntz’...36
Opcode ‘decvjn’...36
Opcode ‘decvjnl’ ...36
Opcode ‘dels’...36
Opcode ‘delt‘ ...37
Opcode ‘dir’...37
Opcode ‘divv’ ..37
Opcode ‘event’...37
Opcode ‘gdir’...37
Opcode ‘gout’ ..37
Opcode ‘gpwr’ ...38
Opcode ‘jmp’ ...38
Opcode ‘jmpl’..38
Opcode ‘light’..38
Opcode ‘lsbt’ ...38
Opcode ‘lscal’ ..38

User Guide & Reference Scout SDK

November 1999 Page 7 of 68

Opcode ‘lsh’...38
Opcode ‘lslt’ ..39
Opcode ‘lsut’ ...39
Opcode ‘monal’ ...39
Opcode ‘monax’ ..39
Opcode ‘mone’ ..39
Opcode ‘monel’ ...39
Opcode ‘monex’ ..39
Opcode ‘msg’...40
Opcode ‘msgs’ ...40
Opcode ‘msgz’...40
Opcode ‘mulv’ ...40
Opcode ‘offp’...40
Opcode ‘orv’..40
Opcode ‘out’ ..40
Opcode ‘ping’ ..41
Opcode ‘plays’...41
Opcode ‘playt’ ...41
Opcode ‘playv’ ..41
Opcode ‘pollm’..41
Opcode ‘pollp’ ...41
Opcode ‘pwr’ ...41
Opcode ‘remote’ ..42
Opcode ‘rules’ ...42
Opcode ‘scout’...42
Opcode ‘setfb’ ...42
Opcode ‘setp’...42
Opcode ‘setv’...42
Opcode ‘sgnv’..43
Opcode ‘sound’..43
Opcode ‘start’ ..43
Opcode ‘stop’...43
Opcode ‘subv’..43
Opcode ‘sumv’...43
Opcode ‘tmrs’ ..43
Opcode ‘tmrz’..44
Opcode ‘tout’ ...44
Opcode ‘txs’...44
Opcode ‘vll’ ...44
Opcode ‘wait’ ..44

Virtual machine specifics ..45
Sources...45
Output resources ..46
Remote commands...47

ASSEMBLY PROGRAM STRUCTURE TEMPLATES...48

IF … ENDIF...48

IF … ELSE … ENDIF...48

WHILE … ENDWHILE...48

DO … WHILE ...49

DO … UNTIL...49

User Guide & Reference Scout SDK

November 1999 Page 8 of 68

FOREVER … ENDLOOP ..49

LOOP … ENDLOOP ..50

SWITCH … CASE … ENDSWITCH..50

ENTER EVENT CHECK … EXIT EVENT CHECK ...51

WAIT UNTIL EVENT..52

ENTER ACCESS CONTROL … EXIT ACCESS CONTROL ..52

SEMAPHORE BASED GUARDED ACCESS..52

TIMEOUT..53
Measuring timeout with an extra variable..53
Measuring timeout with an extra timer ..53
Timeout without all the fuss ..54
Timeout without timers..54

GENERAL ROBOTICS PROGRAMMING TOPICS ...55

Variables...55

Outputs ...56

Speaker ...56

Display ..56

Inputs ..57

Events..57
Physical events...57
Virtual events...57
Handling events ...57

Structured design...58
Conditional behavior ...58
Repeated behavior ...58
Interruptible behavior ..58

Multi-tasking..58
Synchronization ...58

Distributed systems..59
Communication..59

PROGRAM BLOCK LIBRARY (SUBROUTINES) ...60

3 – MotorDriveSub (lvType)...60

4 – BasicMotionSub (lvType, lvTime)..60

5 – AvoidSub (lvType, lvTime) ...60

User Guide & Reference Scout SDK

November 1999 Page 9 of 68

6 – MovementsSub (lvType, lvTime)..60

7 – GetAverageLightSub () ..61

8 – AutoAdjustLightSub (lvCenterLight, lvThPercent, lvHPercent)..61

9 – SeekSub (lvType, lvTime) ...61

10 – FindBrightSub (lvBrightTH, lvBrightSteps) ...61

11 – GetMotorStatusSub () ..61

12 – Motor2SoundSub (lvStatusA, lvStatusB) ..62

13 – LightGeigerSub (lvIntgLimit)...62

14 – FwdSub (lvDuration, lvTaskFlags) ..62

15 – RwdSub (lvDuration, lvTaskFlags) ..62

16 – SpinRightSub (lvDuration, lvTaskFlags)...62

17 – SpinLeftSub (lvDuration, lvTaskFlags) ...62

18 – FwdTurnRightSub (lvDuration, lvTaskFlags) ..62

19 – RwdTurnLeftSub (lvDuration, lvTaskFlags) ..63

20 – FwdTurnLeftSub (lvDuration, lvTaskFlags) ..63

21 – RwdTurnRightSub (lvDuration, lvTaskFlags)..63

22 – ZigZagSub (lvDuration, lvTime, lvTaskFlags)..63

23 – CircleRightSub (lvDuration, lvTime, lvTaskFlags) ..63

24 – CircleLeftSub (lvDuration, lvTime, lvTaskFlags)...63

25 – AvoidRightSub (lvMovTime, lvTaskFlags) ...64

26 – AvoidLeftSub (lvMovTime, lvTaskFlags)..64

27 – BugshakeSub (lvMovTime, lvTaskFlags) ..64

28 – LoopABSub (lvMovTime, lvTaskFlags) ..64

29 – GetSema0Sub () ..65

30 – GetSema1Sub () ..65

31 – GetSema1Sub () ..65

32 – InitSysSub () ..65

VLL COMMAND SET...66

User Guide & Reference Scout SDK

November 1999 Page 10 of 68

 Introduction
This User Guide & Reference document tells you how to use ScoutTool.exe and ScoutDOS.exe applications directly to
write programs for the LEGO® MINDSTORMS™ Scout™ programmable brick.

All examples in this document are written as LEGO Assembly (LASM) programs, which is a text representation of the byte
code commands that the Scout can execute, providing detailed control over the Scout.

Pre-requisites
No other software is required but you must have a LEGO serial cable and an IR Tower from another MindStorms set such
as LEGO MindStorms Robotics Invention System 1.0 or 1.5. You may also purchase a combined IR Tower and cable pack
(item W979713) over the Internet from www.pitsco-legodacta-store.com (select “RoboLab”, then “RoboLab Components”
and finally “Infrared Transmitter and Cable Pack (PC and MAC)”).

Document structure
The rest of the document contains:
• a more technical description of the Scout,
• how to install and use the SDK,
• what byte code assembly commands are available and what they do,
• standard program structure templates, and
• general programming issues to consider and be aware of when controlling robot systems.

This document is not intended to be a complete textbook on the art of programming or the art of robotics or any such related
area. Instead it is hoped that it will provide a correct technical description of how to program the Scout at the most detailed
level in order to get as much as possible out of all the functionality it provides.

http://www.pitsco-legodacta-store.com/

User Guide & Reference Scout SDK

November 1999 Page 11 of 68

 The Scout – brief description
In this part a brief introduction is given to the basic concepts of the Scout.

The Scout is developed with the RCX as a ‘big brother’ but targeted at lower age and lower price. Therefore a lot of the
elements of the RCX are reused, some are left out and a range of new elements is put in, partly to accommodate the lower
age, partly from hard earned experiences with the RCX.

The Scout brick seen from the outside

The size of the Scout is the same as the RCX. It uses the same battery box, containing 6 AA battery cells. Also the
placement of buttons, sensor inputs and motor outputs is consistent with the design of the RCX.

Light sensor

Buttons

Outputs
LED Indicators

LCD Display

Touch Sensor
 Inputs

IR Transceiver

VLL Output

User Guide & Reference Scout SDK

November 1999 Page 12 of 68

Output ports with LED indicators

The Scout has two motor output ports: Motor A and Motor B. Connection to the ports is made with the standard LEGO 2-
wire terminal system. Motors can be turned On and Off and their direction and power level can be set.

As a global control you can connect and disconnect a motor, set normal or inverse direction and set a maximum power
level. Global motor control works as illustrated bellow:

Power to the motor output ports is selectable in 8 levels. In Stand Alone mode (see Stand Alone Mode) the motors always
run at full power. Direction of the motors can be set to Forward or Reverse.

Control of the motor outputs can be obtained in four different ways:
• From a downloaded program
• By direct command from the IR Tower
• Using the LEGO Remote Control
• By PB Message from another P-Brick

To each motor output there are two green LED’s indicating motor direction when the output is ON. Try to connect a motor
to an output. Don’t turn the Scout On. Then turn the motor and look at the indicator LED’s. Isn’t that cool?

Touch sensor ports with LED indicators

Forward Reverse

Motor A Motor B

Motor
Connect/
Disconnect

Normal/
Inverse directionMax. Power

Output Control Register

LED Indicators

Touch 1 Touch 2

User Guide & Reference Scout SDK

November 1999 Page 13 of 68

The Scout has two touch sensor input ports: Touch 1 and Touch 2. Connection to the ports is made with the standard LEGO
2-wire terminal system. Only the LEGO touch sensor type, with optional resistor identification, is supported at these inputs.

Sensor values are:

Boolean value: 0 or 1 (Released or Pressed)
Raw value: 0 to 255

The Sensor ID can be read in the Sensor Type Register. In this way the program inside the Scout or an application is able to
see which kind of touch sensor is connected to a certain input. Three ID-touch sensors are available: Red, Yellow or White.

For each touch sensor a yellow LED is indicating when the sensor is activated (pressed).

Build-in light input with LED indicator

The light sensor performs measurement of the surrounding light level.

Values of the sensor are:

State value: Dark, Normal or Bright
These states are determined using an upper threshold, a lower threshold and a hysteresis set up
for the light sensor: When the raw sensor value is below lower threshold the state is Bright,
above the upper threshold it is Dark, else it is Normal.

Raw value: 0-1020 (Low value: Bright, high value: Dark)

In Stand Alone mode the light sensor is automatically calibrated at start up. The surrounding light level is measured and
upper- and lower threshold is set 12.5% above and below this center value. Hysteresis is set to 3.12% of the center value.

A yellow LED indicates when the light sensor is in Dark or Bright states.

VLL output

The Visible Light Link (VLL) output can send VLL codes.

Light sensor

LED
Indicator

VLL
Output

User Guide & Reference Scout SDK

November 1999 Page 14 of 68

The VLL output can be controlled from the user program or through direct IR commands. If a Motor C button on the LEGO
Remote Control is pressed, the corresponding motor control command will be sent on the VLL output.

The VLL signals are transmitted using visible red light through an optical fiber.

The MicroScout has VLL-input. Motor and sound can be controlled and a program can be scripted into the MicroScout
through the VLL link. This can be done from a program in the Scout, or by using the Scout as the “intermediate agent” it
can be done from an application, from the LEGO remote control or from another P-Brick (Scout/RCX).

In the future more bricks equipped with VLL input/output may appear.

IR transceiver with LED indicator

The IR transceiver unit is used to communicate with a PC through the IR Tower (using the Scout low-level protocol), to
receive remote control commands and to communicate with other P-Bricks through the PB Message system.

A green LED indicates IR Transceiving.

Buttons: ON/OFF, Select, Change, Run

Four buttons and an LCD display form the primary user interface.

Buttons are:

• On-Off
Turns the Scout ON or OFF. Press the On/Off-button
and hold it down a couple of seconds to reset the Scout.

• Select
Moves the focus to the next group on the display

• Change
Changes the setting of the group in focus

• Run
Runs the program, if any, of the selected mode

Indicator

IR Transceiver

ON/OFF

Select Change

Run

Select

Change

User Guide & Reference Scout SDK

November 1999 Page 15 of 68

LCD display

The LCD display is divided into seven groups:

• Motion
Selection of basic motion patterns in Stand Alone mode

• Touch
Selection of touch sensor rules in Stand Alone mode

• Light
Selection of light sensor rules in Stand Alone mode

• Time
Selection of time scaling factors in Stand Alone mode

• FX
Selection of special effects theme in Stand Alone mode

• Scout
Mode selection: Stand Alone – or Power mode

• Status
Display of status information:
Download indicator, Power mode program folder, Run indicator, Battery low symbol

Sound output

To output sound the Scout is equipped with a piezo sound element.
Sounds can be played by using the built in system sounds with the sound sets or by playing a tone with a certain frequency
(as a constant or from a variable) for a certain time:

Sound can globally be turned On and Off.

Inside the Scout: Basic functionality

Motion LightTouch

Time FXScout

Status line

On/OffSoundSet (No)
PlaySystemSound (No)

PlayTone (Frequency, Time)
PlayToneVar (VarNo, Time)

User Guide & Reference Scout SDK

November 1999 Page 16 of 68

The Scout is operated in two different modes: Stand Alone mode and Power mode.
The user sets the mode of operation by selecting the Scout-group on the display and then change to the desired mode.

Stand Alone Mode

The first thing you will notice turning the Scout On in Stand Alone mode is the sound of the heartbeat. A subtle beating
sound in the background telling you, that the Scout is alive.

In this mode the Scout has full IR-link capabilities for direct control, but primary user interaction and programming is
performed through buttons and LCD-display. No programs can be downloaded.

Choosing one and only one rule (command) from each programming group does programming of the Scout. You use the
Select and Change buttons to navigate the groups of the display and change the selection in the groups. When the rule
selection is done, press the Run button and the Stand Alone program will be running.

In the Motion group the basic default motion pattern is selected. The options are:

• No Motion (0)
• Forward (1)
• ZigZag (2)
• Circle Right (3)
• Circle Left (4)
• Loop A (5)
• Loop B (6)
• Loop AB (7)

When an event triggers a rule from one of the other groups, and motor control is wanted, the default motion is interrupted.
After this action is completed the Scout will return to default motion. When No Motion is selected the Scout will simply be
waiting for the event driven action of the other groups to happen.

In the Touch group the rule for the two touch sensors is selected. All the rules uses both touch sensors. The rules are:

• Ignore (0)
• Reverse (1)

When T1 or T2 is hit direction on both motors is changed
• Avoid (2)

When T1 is hit the model will back up and turn to the right
When T2 is hit the model will back up and turn to the left

• WaitFor (3)
The model waits for T1 or T2 to get hit, then action starts

• Brake (4)
While T1 is pressed, Motor A is braked
While T2 is pressed, Motor B is braked

The Light group contains the light sensor rules:

User Guide & Reference Scout SDK

November 1999 Page 17 of 68

• Ignore (0)
• Seek Light (1)

Model turns around every now and then and finds the brightest direction
• Seek Dark (2)

Model turns around every now and then and finds the darkest direction
• Avoid (3)

If it gets Bright or Dark the model will back up and turn away
• WaitFor (4)

The model waits for the light to get Bright or Dark, then action starts
• Brake (5)

While the light is Bright or Dark both motors are braked

In the Time group you select the Time Scaling factor of the Stand Alone Program System. In all of the Program Blocks
used in the Stand Alone Program System timing values are scaled with this factor. Settings are:

• Short (0, one circle) Scale factor 1
• Medium (1, two circles) Scale factor 2
• Long (2, three circles)Scale factor 4

I.e. the fewer circles, the faster the program will run.

In the FX group a Special Effects Theme is selected. Each theme has a Sound Set that will take effect on all the event
triggered sounds in the Scout. FX Theme selections:

• No Theme (0)
• Bug (1) Does the Bug-dance every now and then
• Alarm (2) Alarm-sound depending on the motor drive
• Random (3) Does a sequence of random movements now and then
• Science (4) Sound beeping Geiger function on the light sensor

When the program runs in Stand Alone mode, a background task is waiting for PB Messages and does actions depending on
the incoming message value. The messages 1, 2 and 3 are used to start a special effect:

PBM 1: Seek dark
PBM 2: Seek light
PBM 3: The Bug dance

When the special effect is finished the Scout will return to the default motion (as with any FX selected in the program).

Messages 4-12 are used to do basic motor drive control:

PBM 4: Forward A Fwd, B Fwd
PBM 5: Reverse A Rwd, B Rwd
PBM 6: Spin right A Fwd, B Rwd
PBM 7: Spin left A Rwd, B Fwd
PBM 8: Turn right (forward) A Fwd, B Off
PBM 9: Turn left (reverse) A Rwd, B Off
PBM 10: Turn left (forward) A Off, B Fwd
PBM 11: Turn right (reverse) A Off, B Rwd
PBM 12: Stop A Off, B Off

After half a second the motor drive started by a PB Message will time out and the Scout will return to the default motion. In
this way an RCX can repeatedly send PB Messages to stay in control. The motor control made by the RCX will override the

User Guide & Reference Scout SDK

November 1999 Page 18 of 68

default motion. If a sensor event or a special effect takes place it will interrupt the PB Message controlled motion (just as it
would with the default motion).

You could e.g. program a Scout for Forward motion and Avoid touch. Then program an RCX to send PBM 10 repeatedly
when Touch sensor 1 is pressed and PBM 8 when Touch sensor 3 is pressed. Thus the RCX can be used to remote steer the
Scout by overriding the Scout default motion. If one of the touch sensors on the Scout is hit, the Avoid sequence will be
started, even if the remote steering from the RCX is active.

Power Mode

In Power mode the user can interact with the Scout from an application through e.g. the LEGO IR Tower. The
communication is done using the IR link and the Scout Low Level protocol.

In this mode you can perform direct control of the Scout from an application, you can poll data from the Scout and you can
download a program to be run from the Power mode Program System.

The VLL Output can be used for programming or controlling other devices equipped with VLL Input.

Pressing the Run button in Power mode runs the Power mode program if any.
Pressing the Select button will have no effect (Error sound).
Pressing the Change button will change to the Stand Alone mode.

User Guide & Reference Scout SDK

November 1999 Page 19 of 68

The Scout and the LEGO Remote

The LEGO Remote Control can be used to control the Scout without having to touch the buttons. PB Messages can be sent,
basic motor control can be performed, programs can be started and stopped and a sound can be played.

Button Action

Message 1 PB Message 1 is sent: SeekDark
Message 2 PB Message 2 is sent: SeekLight
Message 3 PB Message 3 is sent: BugDance

A ▲ Motor A Forward while button is pressed
A ▼ Motor A Backward while button is pressed

B ▲ Motor B Forward while button is pressed
B ▼ Motor B Backward while button is pressed

C ▲ VLL output (red LED/Motor C) sends Forward command while button is pressed
C ▼ VLL output (red LED/Motor C) sends Backwards command while button is pressed

Sound Play RemoteSound

Stop Stop running program (Stop all tasks)

The program buttons are used to run programs:

User Guide & Reference Scout SDK

November 1999 Page 20 of 68

P1-P4 Set Scout in Stand Alone mode
Stand Alone Setup according to table bellow
Run Stand Alone program

Program Model Motion Touch Light Time FX
P1 Bug 1 ZigZag Avoid Ignore Short Bug
P2 Bug 2 Forward Avoid SeekLight Medium Bug
P3 Intruder Alarm Loop AB Ignore WaitFor Medium Alarm
P4 Hoop-o-bot Loop AB Ignore Ignore Short Random

P5 Set Scout in Power mode
If Power mode program is present (Task 0 is not empty):
Run Power mode program (Start Task 0)

User Guide & Reference Scout SDK

November 1999 Page 21 of 68

 Firmware system design - overview
In this part an overview is given on the structure of the firmware system. The Scout at top level consists of three parts: The
Operating System, the Program System and a Program Block Library (Subs):

Scout resource overview

Scout

OS PS PBL

Scout
CPU

Task 0 Task 1 Task 2 Task 3 Task 4 Task 5

Sub 3 Sub 4 Sub 5 Sub 6 Sub 32

SndSet 0 SndSet 1 SndSet 2 SndSet 3 SndSet 4

ROM

Sub 0 Sub 1 Sub 2

Task 0 Task 1 Task 2 Task 3 Task 4 Task 5

RAM

Random
generator

3 Timers
 3 TimerLimits

2 Counters
 2 CounterLimits

10 Global
variables

VLL LED

IR Transceiver

Light sensor
 Value, Raw

Input 1
 ID, Value, Raw

Input 2
 ID, Value, Raw

8 bit AD

Output A/B
OutputStatusReg
OutputControlReg
OutputSetupReg

Output C
OutputStatusReg
OutputControlReg
OutputSetupReg

Motor
drivers

VLL
output

SystemSetupReg
PwrDwnRelReg
BatteryStatusReg

PBMessage

5 SASetupRegs

SoundFeedbReg

For each task (6):
AccessControlReg
TaskEventReg
8 Local variables

User Guide & Reference Scout SDK

November 1999 Page 22 of 68

The Operating System

The Operating System performs:

• Hardware I/O
Sensor input, Motor output, Sound output, VLL output, IR I/O, Button input, LCD display output.

• Basic system control
Scheduling execution, battery surveillance, power down control etc.

• Control of Downloading in Power mode
• Interpretation of Scout Low Level Commands

From direct control or from program control.
• Execution of the Program System

Running programs in Stand Alone –, or Power mode.
• System control through registers
• Priority control
• Event generation, sound feedback.

The Program System

The Program System has two different modes of operation reflecting the Stand Alone – and Power modes of the Scout.

• Stand Alone mode:
The PS is run from a set of ROM Tasks and is “programmed” by setting up the 5 Stand Alone Setup values: Motion,
Touch, Light, Time and FX. A subset of the Program Blocks in the library is used in Stand Alone mode.

• Power mode:
The PS runs from a set of downloaded RAM Tasks. All of the Subs in the Program Block Library can be freely used.
Also user Subs can be downloaded and used from the RAM Tasks.

The Program System interfaces to the Operating System through a number of global and mode specific resources.

System overview

Tasks

A program consists of one or more tasks running in parallel. Pressing the Run button starts Task 0.

A task contains a stack of commands that are executed in a sequence. A task can start and stop other tasks and call
subroutines.

• The Stand Alone program consists of 6 fixed tasks placed in ROM. These tasks cannot be accessed in Power mode.
• A Power mode program consists of up to 6 tasks placed in RAM.

Subroutines

A subroutine contains a stack of commands that are executed in a sequence.

When execution of the subroutine reaches the end, program execution is returned to the task that called the subroutine (at
the point just after the call). A subroutine cannot call another subroutine.

• The Scout has a library of fixed subroutines in ROM.
• Up to three subroutines can be downloaded to RAM.

User Guide & Reference Scout SDK

November 1999 Page 23 of 68

Global set up

Global settings of the Scout:

• Select the mode of the Scout (From PC or via button interface)
• Turn the sound On and Off (From PC or within program)
• Select one of 5 sound sets (From PC or within program)
• Set the power down time (From PC or within program)
• Select short or long IR range (Only from PC)

Resources available to the user

Hardware resources

Hardware resources are the physical devices available from the outside of the Scout.

Inputs:

Touch sensor 1 and 2

Values are:

• Touch sensor state value: Pressed or Released
• ID number of the touch sensor connected to the port: ID0, ID1 or ID2

Light sensor

Values are:

• Light sensor state value: Dark, Normal, Bright or Undefined
• Light sensor raw value: 0-1020 (Low value: Bright, high value: Dark)

The state values of the light sensor are generated from the raw value passing upper and lower trigger levels. These trigger
levels are calculated using three light sensor parameters:

• Upper Threshold UT
• Lower Threshold LT
• Hysteresis H

Time

Light (Raw)

UT

LT

Normal Normal Normal

Dark

Bright

UT-H LT+H

Upper trigger level

Lower trigger level

User Guide & Reference Scout SDK

November 1999 Page 24 of 68

Outputs:

Motor A, B and C

Motor C is directed to the VLL output.

Immediate motor state settings:

On/Off
Forward/Reverse direction
Power level 1-8 (not motor C)

Global motor settings:

Connect/disconnect
Normal/Inverse direction
Maximum power level 1-8 (not motor C)

The current setting of a motor can be read in the Motor Status Register.

Sound

Sound is controlled in three ways:

Play one of 28 system sounds
System sounds 0 to 9 are placed outside the sound set system.
System sounds 10 to 27 are sound set dependable.
5 fixed sound sets are available.

Play a tone for some time
Give a fixed tone frequency or take the frequency from a variable.

Let the operating system give sound feedback on events.
System sounds 10 to 24 are used by the operating system to give sound feedback on the 15 Scout events.
System sound 25 is the special ‘Dance’ sound. System sound 26 is the special ‘Bug’ sound. System sound 27 is the
special ‘Random’ sound.
Timer 0 event is used to generate the heartbeat.

Feedback on each event can be turned On and Off.

Visible light link (VLL)

Turn the VLL diode On or Off
Send a VLL code.

Software resources

Software resources are those available inside the Scout system.

Variables

• You can load a variable with a constant or copy almost any Scout system value.
• You can perform mathematical operations on and between variables (add, subtract, multiply, divide, AND, OR, etc.).

Global variables:

User Guide & Reference Scout SDK

November 1999 Page 25 of 68

• 10 global variables (all tasks can see them)

Local variables:

• 8 local variables (each task can only see its own locals)

Stand Alone programming variables

• 5 stand alone programming variables make up the programming of the Stand Alone Scout.

Can be set through the button interface in Stand Alone mode or by command in Power mode.

Random generator

• Can generate a random number between 0 and X.

Timers

• 3 timers each with a user defined timer limit.
• Resolution of the timers is 100ms.
• A timer runs to its limit and is then reset to zero by the operating system.
• When a timer reaches its limit, it generates a Timer X on limit event.
• You can copy a timer value into a variable and you can reset a timer to zero.

Counters

• 2 counters each with a user defined counter limit.
• When a counter reaches its limit, it generates a Counter X on limit event.
• You can copy a counter value into a variable, you can increment or decrement it by one or you can reset it to zero.

Mailbox

• One mailbox, that can be loaded (via IR) with a message value between 1 and 255.
• You can copy the contents of the mailbox into a variable or you can reset the contents to zero.

Scout events

• 15 events

1. Touch 1 pressed
2. Touch 1 released
3. Touch 2 pressed
4. Touch 2 released
5. Light entering Light state
6. Light entering Normal state
7. Light entering Dark state
8. 1 Blink detected (a blink time can be set up)
9. 2 Blinks detected
10. Counter 0 on limit
11. Counter 1 on limit
12. Timer 0 on limit
13. Timer 1 on limit
14. Timer 2 on limit
15. Mail received

• Sound feedback on events can be turned On and Off.

User Guide & Reference Scout SDK

November 1999 Page 26 of 68

• You can let the operating system check events for you and you can act on the events when they happen.
You can define a section inside which a jump to a specified label is performed when an event happens.
You can define a list of events and when one of these events happens, the OS will jump and release the event checking.
When an event has released the event checking state the actual releasing event can be read in a task local event register.

• You can send an event to the Scout via the IR-link and the Scout will act as if the event happened.

Scout access control

One of the basic problems to be solved in the Scout is the control of access to common output resources. From the RCX
coding environment it has been seen, that it is very difficult to determine program flow when more than one task (running in
parallel) are controlling the same output devices e.g. motors. The basic paradigm of access control is:

• One and only one task can have access to an Output Resource at the time.

In the Scout, this is done by defining Access Control Sections:

• An Access Control Section contains a block of commands using a set of output resources.
• An Access Control Section is characterized by a priority level, a set of output resources and a resume point.

Conflicts on access to resources are resolved by Section Priority.

Example:

A task is running in an Access Control Section with a certain priority level and involving Motor A control.
Another task enters an Access Control Section of same or higher priority level also involving Motor A control.

Result: Execution of the first task will be returned to the resume point of the section.
The interrupting task will start execution of its Motor A control program section.

Communicating with the Scout

Communicating with the Scout is done through the IR-link.

• Commands from an application through the IR Tower. Direct commands or downloads of programs.
This is done through the Ghost optionally using Assembler, Block splitter or other Ghost utilities.

• Commands from the Remote control.

• PB messages from another Scout or an RCX.

An application can get any data from the Scout by uploading data blocks of variable size.

The Program Block Library

The Program Blocks Library is a collection of Program Blocks contained in subroutines. The Library is placed in ROM.

Each Task has a set of local variables. When a Task calls a Program Block (subroutine) it uses these local variables to set up
the desired functionality of the Block.

From a program these blocks can be used as macro commands: By setting up local variables and calling the subroutine, a lot
of functionality is achieved easily.

User Guide & Reference Scout SDK

November 1999 Page 27 of 68

 Installation
Simply extract all the files from the installation into the same directory. If desirable the target directory can be added to the
PATH environment variable.

Package content
The two SDK downloads should consist of the following files:

ScoutSDK.pdf The document you are reading now

ScoutTool.exe An interactive Microsoft Windows application for programming and monitoring various aspects
of the Scout. Great for experimentation.

ScoutTool.pdf An online help document explaining how the ScoutTool.exe application works.

ScoutDOS.exe A Microsoft DOS command line application for translating and downloading Scout byte code
assembly programs and commands. Can be used as a back-end for other programming systems.

Lasm.dll Assembler kernel

Scout.dll Scout specific information

PbkComm32.dll P-Brick Communication

PbkMouse.exe A utility function to resolve conflicts between serial mice and IR Towers – used by
PbkComm32.dll.

ScoutDef.h Useful macros and definitions for general Scout byte code assembly programs. Most of the
examples in this document assumes that the program contains a:

#include “ScoutDef.h”

directive or that the relevant #define macros are available.

“Samples” folder This folder contains a few sample programs to help show some of the various capabilities and
structure of LASM

Helloworld.txt Simple LASM command to make the Scout play a sound

RepeatAfterMe.txt Simple LASM program that plays 5 notes, one after the other

WatchYourStep.txt Not-so-simple LASM program that implements event/sensor watchers for the timer and touch
sensors

If files are missing, please check back at http://www.legomindstorms.com for updates or new information.

http://www.legomindstorms.com/

User Guide & Reference Scout SDK

November 1999 Page 28 of 68

 Getting started – ScoutDOS.exe
To get you started, some sample programs and download sessions are included below. They show you how to execute direct
commands and how to download both a simple program and a not-so-simple sensor watcher program. For detailed
descriptions of the commands see Instructions/opcodes.

Program arguments – example session
The ScoutDOS.exe program simply takes one or two filenames as parameters. The file is then compiled and, if no errors
were found, downloaded. Status is output to the console window or DOS box (‘stdout’). The result from executing direct
commands may be output to the second optional file name and that file will then be overwritten.

To see the effect for yourself, run the ScoutDOS.exe program in an MS-DOS (Command) Prompt from the directory where
you installed the files. Alternatively you can call the program (as a shell) with filename parameters from another program.

This may look like:

The exact display may change depending on your program files and installation directory.

Example programs

Hello World
The Scout equivalent of the famous ‘C’ Hello World program is to get the Scout to play a sound. The following example
shows this (the program is so simple, you have to type it in yourself).

// System sound 3 is an ascending frequency sweep
plays 3

The effect of executing ScoutDOS.exe with the file should be an almost instant sound feedback from the Scout.

User Guide & Reference Scout SDK

November 1999 Page 29 of 68

Repeat after me
The following program calls a subroutine five times to play the note ‘A’ raised an octave between each time.

#include “ScoutDef.h”

#define TASK_MAIN 0
#define SUB_PLAY 0

#define LOCAL_VAR_0 10
#define LOCAL_VAR_1 11

; This subroutine plays a note for half a second,
; the frequency is passed in a local variable
sub SUB_PLAY
 playv LOCAL_VAR_0, FR_MS_500
 wait SRC_CON, FR_MS_500 + FR_MS_50 ; the Scout has no sound buffer so put in
 ; waits to get the timing right.
ends

task TASK_MAIN
 setv LOCAL_VAR_1, SRC_CON, 5 ; the number of iterations
 setv LOCAL_VAR_0, SRC_CON, TONE_A5 ; the note 'A'
startloop_label:
 decvjn LOCAL_VAR_1, endloop_label ; decrement the loop variable and
 ; exit the loop if it becomes negative
 calls SUB_PLAY
 mulv LOCAL_VAR_0, SRC_CON, 2 ; doubling the frequency equals
 ; raising the note one octave
 jmp startloop_label
endloop_label:
endt

The effect of downloading the program and pressing the ‘Run’ button should be that you hear the note ‘A’ played five times
and raised an octave between each note (the last note may be hard to hear).

Watch your step
The following program sets up a timer to generate an event every second and then watches both touch sensors for being
pressed. The timer generates a heart beat pulse, whereas the touch sensor watcher plays another sound when a sensor is
pressed.

#include "ScoutDef.h"

#define TASK_MAIN 0
#define TASK_TOUCH 1
#define TASK_TIMER 2

#define LOCAL_VAR_0 10
#define LOCAL_VAR_1 11

task TASK_MAIN
 ; initialization
 out OUT_OFF, OUTLIST_AB ; turn motors off
 setfb SRC_CON, FBMASK_NO_FB ; shut the system up
 tmrs 0, SRC_CON, CR_SEC_1 ; wait a second

 ; start sensor watchers
 start TASK_TOUCH
 start TASK_TIMER
endt

User Guide & Reference Scout SDK

November 1999 Page 30 of 68

task TASK_TOUCH
starttask_label:

 mone SRC_CON, EVENT_TPR, watchercode_label

forever_label:
 jmp forever_label ; wait here until (one of) the event(s) happens

watchercode_label:

 plays SND_BEEP

 jmp starttask_label
endt

task TASK_TIMER
starttask_label:

 mone SRC_CON, EVENT_TMR1, watchercode_label

forever_label:
 jmp forever_label ; wait here until the timer triggers

watchercode_label:

 plays SND_CLICK

 jmp starttask_label
endt

Instead of just playing sounds, the touch sensors could control motor power or something similar.

Remember to press the ‘Run’ button to actually start your program.

User Guide & Reference Scout SDK

November 1999 Page 31 of 68

 Getting started – ScoutTool.exe
The preceding chapter dealt with the command line application ScoutDOS.exe which is good for batch processing or for use
as a back-end for another system. To help with experimentation and to support the program development and debugging
process, another application, ScoutTool.exe, is supplied.

ScoutTool.exe provides an Interactive Development Environment (IDE) with a Graphical User Interface (GUI) and it is a
32-bit Microsoft Windows application.

The main screen looks like this:

There are a number of buttons to control the set-up of the Scout and the communication between the Scout and the PC.

The text boxes are used to write Scout byte code assembly programs, which can be downloaded and run.

There are also facilities for writing small collections of user commands that are immediately run when the Direct User
Commands buttons are pressed.

There are some status fields that show the result of translating the user programs or commands or the communication status.

Lastly, there are a collection of buttons to generate simulated events that the Scout can recognise and may react to.

Advanced Monitoring
By pressing the Advanced button you get to see the Advanced Monitoring screen:

User Guide & Reference Scout SDK

November 1999 Page 32 of 68

You can start and stop the program and use the display to get dynamic feedback on what the program sees – this may help
you to understand your programs behavior.

The ScoutTool.exe application is explained in more depth in the document ScoutTool.pdf.

User Guide & Reference Scout SDK

November 1999 Page 33 of 68

 Program syntax
The main elements of LEGO Byte Code Assembly (LASM) programs are described in the sections below.

Commands
A command consists of the opcode/mnemonic and a (possibly empty) list of parameters, such as:

opcode [arg1, …, argn]

Commands are separated by NEWLINE characters; i.e. there can be at most one command per line.

The parameters can be expressions using numerical operators such as ‘+’, ‘-‘, ‘*’, ‘/’, bit operators such as ‘~’, ‘&’, ‘|’,
relational operators such as ‘<’, ‘>’, ‘<=’, ‘>=’, ‘==’, ‘!=’ and logical operators such as ‘&&’ and ‘||’.

Please note that the translator is case sensitive and that all commands use lower case.

Labels
Labels are symbolic program addresses that can only be used within the same structure they are defined in. Labels are not
allowed together with immediate commands. Since no immediate commands use labels, their use is flagged as explicit
errors rather than safely ignoring them.

A label is an alphanumeric string at the beginning of a new line immediately followed by a colon, as in:

MyLoopLabel: opcode [arg1, …, argn]

Labels may be indented with space and TAB characters.

Comments
Everything on a line after a semicolon (‘;’) or a C++ style comment header (‘//’) is treated as a comment, as in:

MyLoopLabel: opcode [arg1, …, argn] ; this is where my loop starts

For convenience, ‘C’ style comments (“/* … */“) are also allowed.

Structures
In the programs, tasks and subroutines are used as the main structuring units. The structures begin with ‘task id’ or ‘sub id’
and are terminated by ‘endt’ and ‘ends’ respectively.

Everything outside the scope of a task or a subroutine (a structure in general) is considered a direct command.

opcode1 arg1 ; a direct command

task 0 ; task 0 is the main task

MyLoopLabel: opcode2 arg1, … ; this is where my loop starts
; this is inside a structure,
; so labels are allowed

…
endt ; end of main task

sub 2 ; a user subroutine
…
ends

User Guide & Reference Scout SDK

November 1999 Page 34 of 68

Pre-processor directives
To improve the structure and readability of the source files, a few standard ‘C’ type pre-processor directives will be
supported:

// Useful symbolic names for command argument SOURCE.
#define SRC_VAR 0
#define SRC_CON 2

#define MASK 0xFFFF // useful for 16 bit values
#define VALUE MASK & 123456 // macros can contain expressions

// Either some common code/sub/task or
// common definitions like above.
#include “usefulstuff.asm”

andv array_base + 3, SRC_CON, VALUE // use the macros in commands

The #define macros do not currently accept parameters. There is a nesting limit of 16 with #include and #define macro
expansions.

By using the ‘//’ comment format in include files, useful definitions can be shared between assembler and C/C++ programs
as header include files.

Mixing programs with direct commands
The ScoutDOS.exe program can also execute direct commands, and it is possible to mix program elements (tasks and
subroutines) with direct commands so that one can set up a complete system from within the same program.

Parameters
In the assembler command list below, the following abbreviations are used:

Abbreviation Explanation
‘src’, ‘s1’, ‘s2’ The source of a number, i.e. its type or origin
‘val’, ‘v1’, ‘v2’ The ‘value’ of a number, i.e. what element of the type that its source tells
‘number’, ‘n1’, ‘n2’, ‘n3’,
‘n4’,‘n5’,

A direct number

‘onoff’ A Boolean expression
‘motors’ A bit field list of the affected motors
‘eventlist’ A bit field list of the relevant events
‘resources’ A bit field list of the accessed resources
‘commands’ A bit field list of the requested remote commands
‘label’, ‘relative address’,
‘offset’, ‘adr’

All addresses in commands that can jump to different program instructions are relative to
the address field inside the byte code command. They can either be specified directly as a
(signed) number or by reference to a label. The assembler will then compute the offset,
when it knows the addresses of both the label and the program instruction.

Offsets come in two sizes: short (-128 to 127) and long (-32768 to 32767).

Using labels is by far the safest option, as the assembler knows about the necessary field
offsets and address calculations. Besides, carefully named labels can help in documenting
the program.

‘relop’ Relational operator for comparisons: 0 (greater than), 1 (less than), 2 (equal to) and 3
(different from).

For the exact bit masks see the last section in this chapter.

User Guide & Reference Scout SDK

November 1999 Page 35 of 68

Instructions/opcodes
The following section lists, in alphabetical order, all the byte code assembly commands for the Scout brick and the legal
parameter sources. Legal ranges for each source type are listed later in the document.

Opcode ‘absv’
Sets variable ‘number’ with the absolute value of the given value

absv number, src, val

Legal range for ‘src’: 0 (variables) or 2 (constants).

Opcode ‘andv’
Sets variable ‘number’ with the result of the bit wise AND of the given value and variable ‘number’

andv number, src, val

Legal range for ‘src’: 0 (variables) or 2 (constants).

Opcode ‘boot’
Starts the Power mode command interpreter in the P-Brick, if the string matches the handshake. Only possible as a direct
command.

boot n1, n2, n3, n4, n5

The handshake numbers are “LEGO®” as ASCII values (0x4C, 0x45, 0x47, 0x4F, 0xAE).

Opcode ‘calls’
Executes subroutine ‘number’. The firmware does not support subroutines to call other subroutines. Only possible as a
program command.

calls number

Legal range for ‘number’: 0-32 (0-2 is user subroutines, 3-32 is the built-in system subroutines - see “Program Block
Library”).

Opcode ‘chk’
Checks the condition and jumps to ‘adr’ (short offset) if the condition evaluates to FALSE. Only possible as a program
command.

chk s1, v1, relop, s2, v2, short adr

Legal range for ‘s1’ and ‘s2’: 0 (variables), 1 (timers), 2 (constants), 3 (motor status), 9 (sensor value), 12 (raw sensor
value), 15 (IR message), 17 (output setup), 18 (stand alone setup), 21 (counter), 23 (task event register) and 24 (event sound
feedback register). Only the first parameter source/value pair can indicate a constant value (2).
Legal range for ‘relop’: 0 (greater than), 1 (less than), 2 (equal to) and 3 (not equal to).

Opcode ‘chkl’

chkl s1, v1, relop, s2, v2, long adr

As above, but with a long relative address offset

User Guide & Reference Scout SDK

November 1999 Page 36 of 68

Opcode ‘cntd’
Decrements one of the built-in counters.

cntd number

Legal range for ‘number’: 0-1.

Opcode ‘cnti’
Increments one of the built-in counters.

cnti number

Legal range for ‘number’: 0-1.

Opcode ‘cnts’
Sets the counter value (for overflow detection and event generation).

cnts number, src, val

Legal range for ‘number’: 0-1.
Legal range for ‘src’: 0 (variable), 2 (constant value) and 4 (random value)

Opcode ‘cntz’
Clears the given counter.

cntz number

Legal range for ‘number’: 0-1.

Opcode ‘decvjn’
Decrements the (loop) variable ‘number’ and jumps if the value becomes less than zero (negative). Only possible as a
program command.

decvjn number, relative address

Legal range for ‘number’: 0-17 (0-9 are global variables and 10-17 are local variables to the task).

Opcode ‘decvjnl’

decvjnl number, relative address

As above, but with a long relative address offset.

Opcode ‘dels’
Deletes one or all subroutines. Only possible as a direct command.

dels [number]

Legal range for ‘number’: 0-2.

User Guide & Reference Scout SDK

November 1999 Page 37 of 68

Opcode ‘delt‘
Deletes one or all tasks. Only possible as a direct command.

delt [number]

Legal range for ‘number’: 0-5.

Opcode ‘dir’
Changes the direction of the listed outputs.

dir action, motors

Legal range for ‘action’: 0 (backward), 1 (change direction), 2 (forward).
Legal range for ‘motors’: 1-7 (a bit mask).

Opcode ‘divv’
Divides variable ‘number’ with the given value

divv number, src, val

Legal range for ‘src’: 0 (variables), 2 (constants).

Opcode ‘event’
Makes the Scout behave as if one or more events had occurred

event eventlist

Legal range for ‘eventlist’: 1-32767 (a bit mask for the 15 possible system events).

Opcode ‘gdir’
Changes the global direction settings of the listed outputs, so that all subsequent normal motor direction commands will be
overridden:

gdir action, motors

Legal range for ‘action’: 0 (backward), 1 (change direction), 2 (forward).
Legal range for ‘motors’: 1-7 (a bit mask).

Opcode ‘gout’
Changes the master output status of the listed outputs, so that all subsequent normal motor power commands will be
overridden.

gout action, motors

Legal range for ‘action’: 0 (float), 1 (off), 2 (on).
Legal range for ‘motors’ is a bit-mask: 1-7.

User Guide & Reference Scout SDK

November 1999 Page 38 of 68

Opcode ‘gpwr’
Master output power instructions for motors, so that all subsequent normal motor power commands will be overridden.

gpwr motors, source, number

Legal range for ‘source’: 0 (variable), 2 (constant value) and 4 (random number) – all limited to 0-7
Legal range for ‘motors’: 1-7 (a bit mask)

Opcode ‘jmp’
Go to the given address (short offset) and continue the program from there. Only possible as a program command.

jmp short relative address

Opcode ‘jmpl’
As ‘jmp’ but with long offset.

jmpl long relative address

To minimize program size, try to use the short form and only when the translation complains, change to the long form.

Opcode ‘light’
Turns the VLL output (the red LED) on or off for decorative purposes

light onoff

Legal range for ‘onoff’: 0-1 (Boolean).

Opcode ‘lsbt’
Sets the Light Sensor Blink Time

lsbt src, val

Legal range for ‘src’: 0 (variables) and 2 (constant values).
Legal range for ‘val’: 1-32767 (measured in 0.01 s)

Opcode ‘lscal’
Uses ambient light levels for setting up the light sensor trigger levels. This command sets upper and lower thresholds and
the hysteresis for the light sensor.

lscal

This command takes no parameters.

Opcode ‘lsh’
Sets the Light Sensor hysteresis

lsh src, val

Legal range for ‘src’: 0 (variables) and 2 (constant values).
Legal range for ‘val’: 0-1020.

User Guide & Reference Scout SDK

November 1999 Page 39 of 68

Opcode ‘lslt’
Sets the Light Sensor low threshold

lslt src, val

Legal range for ‘src’: 0 (variables) and 2 (constant values).
Legal range for ‘val’: 0-1020 (a low value indicates a bright environment).

Opcode ‘lsut’
Sets the Light Sensor upper threshold

lsut src, val

Legal range for ‘src’: 0 (variables) and 2 (constant values).
Legal range for ‘val’: 0-1020 (a low value indicates a bright environment).

Opcode ‘monal’
Tries to grab the listed resources at the requested priority or jumps to address if unsuccessful. Also jumps to address if pre-
empted later on. Only possible as a program command.

monal resources, address

Legal range for ‘resources’: 0x01-0x0F (a bit mask).

Opcode ‘monax’
Stops monitoring the (last) set of resources. Only possible as a program command.

monax

This command takes no parameters.

Opcode ‘mone’
Sets the event list to interrupt normal execution flow and jump to address ‘label’ on detection. Only possible as a program
command.

mone src, val, label

Legal range for ‘src’: 0 (variable), 2 (constant value) and 4 (random number).

Opcode ‘monel’
As ‘mone’ but with long offset

monel src, val, label

To minimize program size, try to use the short form and only when the translation complains, change to the long form.

Opcode ‘monex’
Stops event monitoring. Only possible as a program command.

monex

This command takes no parameters.

User Guide & Reference Scout SDK

November 1999 Page 40 of 68

Opcode ‘msg’
Sends the given value as an 8-bit P-Brick message

msg src, number

Legal range for ‘src’: 0 (variable) and 2 (constant value).

Opcode ‘msgs’
Sets the P-Brick message (buffer) by mimicking receipt of a message that also generates an event. Only possible as a direct
command.

msgs number

Legal range for ‘number’: 0-255.

Opcode ‘msgz’
Clears the P-Brick message (buffer)

msgz

This command takes no parameters.

Opcode ‘mulv’
Multiplies variable ‘number’ with the given value

mulv number, src, val

Legal range for ‘src’: 0 (variable) and 2 (constant value).

Opcode ‘offp’
Turns the P-Brick off

offp

This command takes no parameters.

Opcode ‘orv’
Sets variable ‘number’ with the result of the bit wise OR of the given value and variable ‘number’

orv number, src, val

Legal range for ‘src’: 0 (variable) and 2 (constant value).

Opcode ‘out’
Changes the status of the listed outputs.

out action, motors

Legal range for ‘action’: 0 (float), 1 (off) and 2 (on).
Legal range for ‘motors’: 1-7 (a bit mask).

User Guide & Reference Scout SDK

November 1999 Page 41 of 68

Opcode ‘ping’
Checks that a P-Brick is available. Only possible as a direct command.

ping

This command takes no parameters.

Opcode ‘plays’
Plays a given system sound

plays number

Legal range for ‘number’: 0-27.

Opcode ‘playt’
Plays a tone with a given frequency for a given duration

playt freq, duration

Legal range for ‘freq’: 30-20000 (Hz).
Legal range for ‘duration’: 1-255 (measured in 0.01 s)

Opcode ‘playv’
Plays a tone with a given frequency (read from variable ‘number’) for a given duration. This is useful for playing music
because a variable may be manipulated in many ways (such as being multiplied by 2) before being played again.

playv number, duration

Legal range for ‘duration’: 1-255 (measured in 0.01 s)

Opcode ‘pollm’
Retrieves a memory snapshot. Only possible as a direct command.

pollm adr, size

Legal range for ‘adr’: 0x0040-0x0440.
Legal range for ‘size’: 1-150.
‘adr’ + ‘size’ cannot exceed 0x0440.

Opcode ‘pollp’
Retrieves the ROM and Firmware RAM versions if the magic numbers are correct. Only possible as a direct command.

pollp n1, n2, n3, n4, n5

The magic numbers are: 1, 3, 5, 7, and 11.

Opcode ‘pwr’
Sets the power level for the listed outputs

pwr motors, src, val

Legal range for ‘motors’: 1-7 (a bit mask).
Legal range for ‘src’: 0 (variable), 2 (constant value) and 4 (random number).

User Guide & Reference Scout SDK

November 1999 Page 42 of 68

Opcode ‘remote’
Sends the same remote commands as the buttons on the hand held device. The Scout does not reply to remote commands.
Remote motor commands time out after 125 ms, so the remote control repeatedly sends the keys that the user is pressing.
When the keys are released, a special remote command is sent to allow the non-motor related commands to be handled
again (those that don’t repeat their effect). To mimic that behavior from the PC, it is necessary to interleave such key release
commands. Only possible as a direct command.

remote commands

Legal range for ‘commands’: 0x0000-0xFFFF (see “Remote commands” for a description of the bits).
All buttons correspond to a single bit in the 16-bit ‘commands’ value. The motor commands can be combined with the other
commands (but only one forward or reverse command per motor).

Opcode ‘rules’
Selects Scout Motion, Touch, Light, Time and FX rules for the Scout Stand Alone mode.

rules motion, touch, light, time, fx

See “Inside the Scout: Basic functionality” for the legal ranges of the various rule groups.

Opcode ‘scout’
Selects Stand Alone (SA) or Power mode

scout number

Legal range for ‘number’: 0 (Stand Alone mode) and 1 (Power mode).

Opcode ‘setfb’
Selects which (external) events should result in a system sound being played

setfb src, val

Legal sources are: 0 (variable), 2 (constant value) and 4 (random number).
The resulting value has the same structure as an event list with each bit corresponding to a system event.

Opcode ‘setp’
Sets the task priority to be used for access control. Only possible as a program command.

setp number

Legal range for ‘number’: 0-7 (with 0 being the most important/highest priority).

Opcode ‘setv’
Sets variable ‘number’ to the given value

setv number, src, val

Legal range for ‘src’: 0 (variables), 1 (timers), 2 (constants), 3 (motor status), 4 (random number), 9 (sensor value), 10
(sensor type), 12 (raw sensor value), 15 (IR message), 17 (output setup), 18 (stand alone setup), 21 (counter), 23 (task event
register) and 24 (event sound feedback register).

User Guide & Reference Scout SDK

November 1999 Page 43 of 68

Opcode ‘sgnv’
Sets variable ‘number’ with the result of the sign test of the given value

sgnv number, src, val

Legal range for ‘src’: 0 (variable) and 2 (constant value).

Opcode ‘sound’
Controls global sound settings (allows a ‘mute’ functionality) and selects which scheme is currently used for system sounds
10-27:

sound sound_enable, sound_onoff, soundset_number

Legal range for ‘sound_enable’: 0 (disregard ‘sound_onoff’ and select ‘soundset_number’ for the system sounds) and 1
(disregard ‘soundset_number’ and use ‘sound_onoff’ to globally control all sounds).
Legal range for ‘sound_onoff’: 0 (mute all sounds) and 1 (allow sounds to pass through).
Legal range for ‘soundset_number’: 0 (NoSoundset), 1 (Basic), 2 (Bug), 3 (Alarm), 4 (Random) and 5 (Science)

Opcode ‘start’
Starts executing a task from the beginning or restarts it if it was already running

start number

Legal range for ‘number’: 0-5.

Opcode ‘stop’
Stops execution of one or all tasks

stop [number]

Legal range for ‘number’: 0-5.

Opcode ‘subv’
Subtracts the given value from variable ‘number’

subv number, src, val

Legal range for ‘src’: 0 (variable) and 2 (constant value).

Opcode ‘sumv’
Adds the given value to variable ‘number’

sumv number, src, val

Legal range for ‘src’: 0 (variable) and 2 (constant value).

Opcode ‘tmrs’
Sets the timer limit (for overflow/wrap-around detection and event generation)

tmrs number, src, val

Legal range for ‘src’: 0 (variable), 2 (constant value) and 4 (random number).

User Guide & Reference Scout SDK

November 1999 Page 44 of 68

Opcode ‘tmrz’
Clears the given timers

tmrz number

Legal range for ‘number’: 0-2.

Opcode ‘tout’
Sets the power down time (time-out) in minutes.

tout time

Legal range for ‘time’: 0-255 (0 means never).

Opcode ‘txs’
Sets the P-Brick transmit power level.

txs range

Legal range for ‘range’: 0 (low level/short range), 1 (high level/long range).

Opcode ‘vll’
Sends a 7-bit VLL command out over the VLL output

vll source, number

Legal range for ‘source’: 0 (variable) and 2 (constant value).

Opcode ‘wait’
Pauses the execution of the task for a given number of 10 ms. Only possible as a program command.

wait src, val

Legal range for ‘src’: 0 (variable), 2 (constant value) and 4 (random number).

User Guide & Reference Scout SDK

November 1999 Page 45 of 68

Virtual machine specifics
The Scout has the following characteristics:

Sources
Source Item Value Explanation
0 Variables 0-9

10-17
Variables 0-9 are shared global variables

Variables 10-17 are local to each task and the sub routines it may call. This allows
safe parameter passing to sub routines if it refers to the passed local variables.

It also means that commands involving variables have different legal ranges
depending on whether they are direct or program commands.

1 Timers 0-3 Timers are free running global counters with a resolution of 100 ms (i.e. 10 ticks
per second).

When reset, they immediately start running (again).

2 Constants –32768 to
+32767

Usually

3 Output Status
Register

0-2 Bit 0-2: Power
Bit 3-3: Direction; 1 – Forward, 0 – Reverse
Bit 4-5: Output no.
Bit 6-6: 1- Break, 0 – Float
Bit 7-7: 1 – On, 0 – Off

4 Random 1-32767

9 Sensor Value This register contains the processed sensor value.

10 Sensor Type This register contains the sensor type

1 = Normal Touch Sensor
5 = ID0 Touch Sensor (Yellow)
6 = ID1 Touch Sensor (Red)
7 = ID2 Touch Sensor (White)

12 Sensor Raw

0-2

This register contains the raw 8 bit A/D converted value

15 PB Message 0

17 Output Setup
Register

0-2 See source 3

18 Stand Alone
Setup

0-4 Contains the rule selection for the five groups:

0 – Motion
1 – Touch
2 – Light
3 – Time
4 – FX

19 Light Sensor
Parameters

0-3 Contains the light sensor control parameters

0 – Upper Threshold
1 – Lower Threshold
2 – Hysteresis
3 – Blink Time

The register is write-only – it cannot be queried by user programs.

User Guide & Reference Scout SDK

November 1999 Page 46 of 68

Source Item Value Explanation
20 Timer Limit 0-2 Timers generate events when they reach their limit. After reaching the limit, a

timer is automatically reset and without a set limit a timer does not run at all.
Setting a timer limit also automatically resets the timer.

To achieve RCX like timer behavior, the limit should be set to the maximum value
(32767).

21 Counters Counters are special to the Scout and behave in many ways as special global
variables, with the limitation that they can only be reset (to zero), incremented and
decremented.

22 Counter Limit

0-1

Counters generate events when they reach their limit.

They can act as score keepers in some competitive applications where a task can
monitor the counter limit as the end of the game, or a timer can generate time-out
warnings.

23 Task Event
Register

0-5 Each task gets a copy of the relevant bits in the global event register, when
monitored events occur. The bits are thus:

0x0001 == Touch 1 Pressed
0x0002 == Touch 1 Released
0x0004 == Touch 2 Pressed
0x0008 == Touch 2 Released
0x0010 == Light Sensor Enter Light State
0x0020 == Light Sensor Enter Normal State
0x0040 == Light Sensor Enter Dark State
0x0080 == Light Sensor 1 Light Blink
0x0100 == Light Sensor 2 Light Blinks
0x0200 == Counter 0 Over Limit
0x0400 == Counter 1 Over Limit
0x0800 == Timer 0 Over Limit
0x1000 == Timer 1 Over Limit
0x2000 == Timer 2 Over Limit
0x4000 == PBMessage Received

24 Event Sound
Feedback
Register

0 Contains a bit for each of the system events above, indicating whether or not that
event should generate the corresponding system sound when it occurs.

Output resources

The following table shows how shared output resources are constructed.

Bits Explanation
0x01
0x02
0x04
0x08

MOTOR_A
MOTOR_B
SOUND
VLL_OUT

For multiple access, the resources can be OR’ed together.

User Guide & Reference Scout SDK

November 1999 Page 47 of 68

Remote commands

The following table shows how remote control messages are constructed.

Bits Explanation
0x0000

0x0100
0x0200
0x0400
0x0800
0x1000
0x2000
0x4000
0x8000
0x0001
0x0002
0x0004
0x0008
0x0010
0x0020
0x0040
0x0080

Key(s) released

PBMessage 1
PBMessage 2
PBMessage 3
Turn motor A on in forward direction
Turn motor B on in forward direction
Turn motor C on in forward direction
Turn motor A on in backwards direction
Turn motor B on in backwards direction
Turn motor C on in backwards direction
Select Program 1
Select Program 2
Select Program 3
Select Program 4
Select Program 5
Stop the program and turn all motors off
Play a sound

The _OUTPUT_ commands can be OR’ed with the other commands (but only one command per output port).

User Guide & Reference Scout SDK

November 1999 Page 48 of 68

 Assembly program structure templates
In order to produce structured programs even in assembly the following templates are supplied as a programming aid like
the structuring offered by SPIRIT.OCX. The examples start with a SPIRIT.OCX style code snippet using ‘PB’ as the object
name. If you do not know about SPIRIT.OCX, you can look at www.legomindstorms.com/sdk to see and download another
Software Developers Kit for SPIRIT.OCX. The SPIRIT.OCX SDK is intended for more detailed programming of the
LEGO MindStorms Robotics Invention System ‘RCX’ programmable brick and the LEGO Technic CyberMaster
programmable brick.

The program templates do not distinguish between short/long forms of the commands, where they exist. The smallest
programs are achieved by using the short form initially and then changing it to the long form if the assembler complains that
the relative address is out of range.

IF … ENDIF
Structures like:

PB.If s1, v1, relop, s2, v2
true code

PB.EndIf

Gets implemented as:

chk s1, v1, relop, s2, v2, endiflabel
{true code}

endiflabel:

IF … ELSE … ENDIF
Structures like:

PB.If s1, v1, relop, s2, v2
true code

PB.Else
false code

PB.EndIf

Gets implemented as:

chk s1, v1, relop, s2, v2, elseiflabel
{true code}

jmp endiflabel
elseiflabel:

{false code}
endiflabel:

WHILE … ENDWHILE
Structures like:

PB.While s1, v1, relop, s2, v2
while code

PB.EndWhile

http://www.legomindstorms.com/sdk

User Guide & Reference Scout SDK

November 1999 Page 49 of 68

Gets implemented as:

startwhilelabel:
chk s1, v1, relop, s2, v2, endwhilelabel

{while code}
jmp startwhilelabel

endwhilelabel:

DO … WHILE
A structure like:

PB.Do
while code

PB.While s1, v1, relop, s2, v2

While not available in SPIRIT.OCX it would be implemented as:

startwhilelabel:
{while code}

chk s1, v1, relop, s2, v2, endwhilelabel
jmp startwhilelabel

endwhilelabel:

DO … UNTIL
Structures like:

PB.Do
until code

PB.Until s1, v1, relop, s2, v2

While not available in SPIRIT.OCX it would be implemented as:

startuntillabel:
{until code}

chk s1, v1, opposite relop, s2, v2, enduntillabel
jmp startuntillabel

enduntillabel:

The opposite of ‘<’ is ‘>’ and the opposite of ‘==’ is ‘!=’ and vice versa. An UNTIL loop executes until a condition is met
which can be useful sometimes.

FOREVER … ENDLOOP
Structures like:

PB.Loop 2, 0 ‘ forever
loop code

PB.EndLoop

Gets implemented as:

startforeverlabel:
{loop code}

jmp startforeverlabel

User Guide & Reference Scout SDK

November 1999 Page 50 of 68

LOOP … ENDLOOP
Structures like:

PB.Loop src, val
loop code

PB.EndLoop

Gets implemented as:

setv loopvarcounter, src, val
startlooplabel:

decvjn loopvarcounter, endlooplabel
{loop code}

jmp startlooplabel
endlooplabel:

SWITCH … CASE … ENDSWITCH
Structures like:

PB.Switch src, val
PB.Case val_1

case 1 code
break

…
PB.Case val_n

case n code
break

PB.Default
default code

PB.EndSwitch

While not available in SPIRIT.OCX it would be implemented as:

case1check:
chk SRC_CON, val_1, EQ, src, val, case2check

{case 1 code}
jmp endswitchlabel

case2check:
…

casencheck:
chk SRC_CON, val_n, EQ, src, val, defaultcheck

{case n code}
jmp endswitchlabel

defaultcheck: ; no check – always true
{default code}

endswitchlabel:

If fall-through behavior is wanted for some branches, one simply removes the ‘jmp endswitchlabel’ in the branch code.

User Guide & Reference Scout SDK

November 1999 Page 51 of 68

If the case values are ordered numerically and sequentially (or can be brought to be so) a more program space- and run time-
efficient scheme exists. It uses the decvjn byte code.

PB.Switch src, val
PB.Case 0:

case 0 code
break

…
PB.Case N:

case n code
break

PB.Default:
default code

PB.EndSwitch

While not available in SPIRIT.OCX it would be implemented as:

setv casevar, src, val
decvjn casevar, case0code
…
decvjn casevar, caseNcode
jmp defaultcode

case0code:
{case n code}

setv casevar, SRC_CON, 0; restore case variable
jmp endswitchlabel
…

caseNcode:
{case n code}

setv casevar, SRC_CON, N; restore case variable
jmp endswitchlabel

defaultcode: ; no check – always true
{default code}

setv casevar, SRC_CON, N; restore case variable
endswitchlabel:

If fall-through behavior is wanted for some branches, one simply removes the ‘jmp endswitchlabel’ commands.

Since the case works by decrementing the variable it may be necessary to reload the variable when exiting. This will not
work with fall-through behavior, so using a separate variable for the switch statement expression is the best solution – it also
saves even more program space and run time.

ENTER EVENT CHECK … EXIT EVENT CHECK
Structures like:

PB.EnterEventCheck src, val ‘ eventlist
non event code

PB.ExitEventCheck

While not available in SPIRIT.OCX it would be implemented as:

mone eventlist, exitlabel
starteventchecklabel:

{loop code}
jmp starteventchecklabel

exitlabel:
monex

User Guide & Reference Scout SDK

November 1999 Page 52 of 68

WAIT UNTIL EVENT
Structures like:

PB.WaitUntilEvent src, val ‘ eventlist

While not available in SPIRIT.OCX it would be implemented as:

mone src, val, there
here: jmp here
there:

ENTER ACCESS CONTROL … EXIT ACCESS CONTROL
The access control mechanism is not using a nesting approach, so one can change the access control during the program
execution. The exit access control command will remove all access control settings for that task.

A typical resume example can have the form:

resumelabel:
{resume or initialization code or none}

setp priority
mona resources, resumelabel

{application code using the listed resources}
monax

If the initialization code is empty, then this is a busy-wait for one or more resources. An abort on contention strategy can
have the form:

{resume or initialization code or none}
setp priority
mona resources, abortlabel

{application code using the listed resources}
monax

{possibly a jump over the abort code}
abortlabel:

{clean up code}

The access controls can be nested or applied sequentially (since the exit command exits all access control).

SEMAPHORE BASED GUARDED ACCESS
By devoting a global variable to a semaphore (access guard), it is possible to provide secure and non-interruptible access to
shared variables, which the access control monitor does not cover.

sub sGetSema
subv vSema, SRC_CON, 1 ; try to get the semaphore

checksemalabel: ; test to see if the task got the semaphore
chk SRC_CON, 0, GT, SRC_VAR, vSema, gotsemalabel

sumv vSema, SRC_CON, 1 ; no success, so give it back
wait SRC_RAN, FR_MS_100 ; wait randomly to prevent race-conditions

; on average, one will wait 50 ms.
subv vSema, SRC_CON, 1 ; then try to get the semaphore again

 jmp checksemalabel

gotsemalabel:
ends

User Guide & Reference Scout SDK

November 1999 Page 53 of 68

sub sReleaseSema
sumv vSema, SRC_CON, 1

ends

The semaphore is used in the following manner:

calls sGetSema
{guarded code}

calls sReleaseSema

The program then waits in the first subroutine call until it gets the semaphore.

The three subroutines 29-31 implement this busy-wait semaphore functionality using global variables 0-2. The release part
must be programmed directly.

TIMEOUT
In order to timeout one or more events one needs a timer. If you also want to measure the time spent waiting for the
event(s), you need an extra timer or an extra variable.

Measuring timeout with an extra variable

tmrs TimeoutTimer, Src, Value ; say when
tmrz TimeoutTimer ; start now

mone SRC_CON, Events | TimeoutTimerOverLimitEvent, EvOrToutLabel

NotYetEvOrToutLabel:
setv TimeMeasureVar, SRC_TIMER, TimeoutTimer
jmp NotYetEvOrToutLabel

EvOrToutLabel:
; check to see if the event happened or it was a timeout
setv EventRegVar, SRC_EVENT, REG_TASKEVENT
andv EventRegVar, SRC_VAR, Events ; mask out the relevant events

; exit if zero i.e. no events
chk SRC_CON, 0, NE, SRC_VAR, EventVarReg, ToutLabel

EvLabel:
{event handling}

ToutLabel:

Measuring timeout with an extra timer

tmrs TimeoutTimer, Src, Value ; say when
tmrz TimeoutTimer ; start now

tmrs TimeoutMeasureTimer, SRC_CON, 32767
tmrz TimeoutMeasureTimer

mone SRC_CON, Events | TimeoutTimerOverLimitEvent, there
here: jmp here
there:

setv TimeMeasureVar, SRC_TIMER, TimeoutMeasureTimer

EvOrToutLabel:
{as above}

User Guide & Reference Scout SDK

November 1999 Page 54 of 68

Since timers are global, it may be better to use a local variable, especially since writing to the variable during the wait
period is ‘free’ if the program is not to do other important stuff during the wait. Also if you want to use the actual measured
period for later control, you will have to use an extra variable anyway.

Timeout without all the fuss
If the actual event, timeout or otherwise, is unimportant (the program just moves on to the next step), then a much simpler
program is possible:

tmrs TimeoutTimer, Src, Value ; say when
tmrz TimeoutTimer ; start now

mone SRC_CON, Events | TimeoutTimerOverLimitEvent, there
here: jmp here
there:

This program will simply wait until an event or the special timeout event happens, before moving on.

Timeout without timers
An even simpler approach is possible that does not use program timers at all:

mone SRC_CON, Events, Handler
wait Src, Value ; wait for timeout here
monex ; timeout expired
jmp Skip

Handler:
…

Skip:

This program will simply abandon event monitoring on time-out and skip the event handling code.

User Guide & Reference Scout SDK

November 1999 Page 55 of 68

 General robotics programming topics
There are a number of general areas that one needs to understand in order to control robotic inventions by means of
downloaded programs.

In general terms a robotic system is an invention that tries to achieve some goal by controlling actuators attached to output
ports while reading and reacting to sensors attached to input ports.

The main areas of interest then becomes:
1. Controlling outputs, typically motors but also sound and light units.
2. Reading and processing inputs.
3. Reacting to external events (as seen through the input sensors).
4. Providing a sensible program structure that will manage all of the above, while possibly meeting an overall goal.

The LEGO P-Bricks are multi-tasking which means that they can execute a number of individual and/or separate jobs in
parallel.

The preceding chapter has a number of examples of general structures (templates) to control the program flow.

Variables
Most programs require you to store and manipulate information for shorter or longer periods of time. In the LEGO P-Bricks
you can do that with variables.

Variables do not have to be allocated – there exist a fixed number of variables and the program has to decide which
variables to use for what.

The program examples below show various uses of variables

#include “ScoutDef.h”

#define GLOBAL_VAR 1 ; a global variable for
; sharing data between tasks

#define LOCAL_VAR 10 ; a task-local variable

setv GLOBAL_VAR, SRC_CON, 42 ; the ultimate answer

; make a local copy
setv LOCAL_VAR, SRC_VAR, GLOBAL_VAR
sumv LOCAL_VAR, SRC_CON, 22 ; add 22 (to get 64)
divv LOCAL_VAR, SRC_CON, 8 ; divide by 8 (to get 8)

; add itself to itself
sumv LOCAL_VAR, SRC_VAR, LOCAL_VAR

In addition to the commands shown above one can also subtract and multiply variables with a parameter, as well as getting
the absolute (positive) value of a number and performing bit wise logical operations on the variables.

The example shows an important aspect of the Scout: It has both global and local (to a task) variables. This means that a
task can use a set of variables for its own purposes without having to worry about the value being changed by another task
and then use the global variables for information sharing with other tasks.

User Guide & Reference Scout SDK

November 1999 Page 56 of 68

Outputs
Outputs (motors) have a polarity (direction) and a power level when turned on.

When turned off, the output can be floating or actively braking. Floating means that you remove the power supply to the
output so that the robot/motor may continue on its own kinetic energy (inertia). Braking is when the output freezes in its
current state meaning that motors stop instantly.

In the assembler commands, motors are addressed as a bit-list, i.e. output 1 has the value 0x01, output 2 has the value 0x02
and output 3 has the value 0x04. Combinations of motors (if you want a command to apply to more motors) are achieved by
setting more bits in the list.

The program examples below show various settings of the motors:

#include “ScoutDef.h”

pwr OUTLIST_AB, SRC_CON, 7 ; power level ranges from 0 to 7
dir DIR_FWD, OUTLIST_A ; forward here
dir DIR_RWD, OUTLIST_B ; backwards here => spin round
out OUT_ON, OUTLIST_AB ; go, go, go

The Scout also has some master control commands (assembler commands starting with ‘g’), which work similarly to these.

Speaker
A special output device is the integrated speaker, which can either play individual notes (given explicitly or read from a
variable) or some of the built-in system sounds.

The resolution of notes is 10 ms (system sounds have fixed duration). Frequencies are given in hertz (Hz).

The program examples below show how to play various sounds:

#include “ScoutDef.h”

playt TONE_A5, FR_SEC_1

plays SND_ERROR

#define TONE_VAR 2

setv TONE_VAR, SRC_CON, TONE_A5
mulv TONE_VAR, SRC_CON, 2 ; ‘A’ raised an octave
playv TONE_VAR, FR_MS_500 ; Just half a second, please

The Scout does not buffer notes or system sounds, so it may be necessary to insert special wait commands to get the timing
right if you want to recreate a tune.

Display
User programs cannot control the display on the Scout. In power mode (where the user can download programs) it will
display a folder icon if there is a task 0 that can be started running.

While running, a series of icons will be animated as visual feedback.

During download of programs, another set of icons will be animated.

User Guide & Reference Scout SDK

November 1999 Page 57 of 68

Inputs
The Scout has two external input ports to which touch sensors can be attached. The special color-coded ID touch sensors
can also be used – they will automatically be detected by the Scout operating system. There is a third built-in input, which is
a light sensor.

Inputs are typically read and stored in variables or used in comparisons for making decisions about program execution.

The program examples below show how to read and use sensor values:

#include “ScoutDef.h”

#define SENSOR_VAR 16

setv SENSOR_VAR, SRC_SENVAL, SEN_TOUCH1

chk SRC_CON, TVAL_PRESSED, EQ, SRC_VAR, SENSOR_VAR, ReleasedLabel

PressedLabel:
{what to do when the touch sensor is pressed}

jmp ButtonFinishLabel

ReleasedLabel:
{what to do when the touch sensor is not pressed}

ButtonFinishedLabel:

Instead of reading and storing the sensor value in a variable, one could ask the command to use the sensor value directly
instead of a variable. This looks like:

chk SRC_CON, TVAL_PRESSED, EQ, SRC_SENVAL, SEN_TOUCH1, ReleasedLabel

For detailed information about where one can use what input sources and what values are within range for that input source,
see the firmware and stand-alone mode specification document.

Events
The Scout firmware operating system has been extended to generate ‘events’ when important things happen. This can
relieve the application from repeated testing for the situations directly and thus bring down both program size and system
load.

Physical events
Physical events occur when the environment changes such as when a touch sensor (button) is pressed and released, when
the light in the room is turned on and off, when a light is flashed into the light sensor a number of times, or when a message
from another P-Brick is received.

Virtual events
Virtual events are events controlled by the downloaded programs. The program can set up timers and (score) counters.
When a timer or counter reaches a predefined value, it generates an event (and the timer resets).

Handling events
It is always possible to see what events a task has received by looking at the TaskEventRegister (source type 23) and take
appropriate actions.

The program can also wait for a specific event to happen before moving on.

Lastly it is possible to instruct the firmware operating system to start monitoring for specific events and then interrupt the
task when they occur (after which the execution will continue at a predefined place in the program). See the “ENTER
EVENT CHECK …” and “ENTER ACCESS CONTROL …” templates for specific information.

User Guide & Reference Scout SDK

November 1999 Page 58 of 68

Structured design
Before writing any program, it is always useful to try to sketch out what the program is supposed to do, typically in the form
of statements about normal behavior and what to do in case of external events.

Conditional behavior
If the behavior of the program is dependent on some external (a button being pressed or the light level being above a certain
threshold) or internal (a variable having a certain value) condition, one should use the “IF … THEN … [ELSE …] ENDIF”
template in the preceding chapter.

Repeated behavior
If the program needs to repeat a behavior a number of times or until a certain condition is fulfilled, one should use one of
the LOOP, WHILE or UNTIL templates in the preceding chapter.

Interruptible behavior
Sometimes it is desirable to be able to react to external events immediately, without having to check for the situation
continuously. To do this, the firmware operating system provides two different kind of ‘monitors’. One monitor checks for
events as described above, and the other monitor checks for access control to shared resources.

When an event happens (out of a program-selected set) or a resource is taken by another task with equal or higher priority,
the normal program execution is stopped and restarted at a (different) program selected address, where proper action can be
taken.

For these kinds of behavior, use the “ENTER EVENT CHECK … EXIT EVENT CHECK” and “ENTER ACCESS
CONTROL … EXIT ACCESS CONTROL” templates in the preceding chapter.

Multi-tasking
The LEGO P-Bricks are multi-tasking which means that they can execute the tasks in the downloaded user programs in
parallel. This enables the program to be broken up in independent chunks that each perform some piece of functionality and
then interact with each other to deliver the overall performance.

The firmware operating system then executes commands in turn from the downloaded and active tasks. Each individual
command is allowed to execute to completion before the operating system moves on to the next task or its own
housekeeping activities. A task is active if it has been started and is not suspended by a wait command or is waiting for
some event. The only task that is started when the green RUN button is pressed is task 0 – if more tasks are required, they
must be started explicitly, either directly from task 0 or by a series of direct commands.

By breaking down a program in smaller pieces, each piece becomes easier to understand. The hard part is then to ensure that
they interact correctly. Interaction is done by means of communication and synchronization.

Synchronization
For intra-task synchronization, one should use the monitors mentioned above – they also provide a form of inter-task
synchronization.

For the most general form of inter-task synchronization, one has to use global variables. Since global variables are just that,
global, care must be exercised when using them. The SEMAPHORE template shown in the preceding chapter provides a
good safe access mechanism without the possibility of corrupting important data that other tasks may be using.

Task-to-task synchronization then consists in deciding a communication protocol using shared memory in the form of
global variables.

A PC-to-P-Brick synchronization protocol is slightly more complex because the PC has to implement the SEMAPHORE
scheme in its application as it cannot call subroutines directly. Since the PC is always Master (and the P-Brick is always
Slave) in any communication one can implement a similar scheme using two global variables, one for flow control and one
for data (the variables must be global as the PC cannot access variables that are local to a task).

User Guide & Reference Scout SDK

November 1999 Page 59 of 68

Distributed systems
More complex systems can be constructed by programming several LEGO P-Bricks and having them exchange information
by sending messages to each other. The same principles as above apply, only on a system-wide basis.

Communication
Messages are sent using the msg command.

When a message is received it generates an event. The actual value can be accessed using SOURCE 15.

When processed, the message buffer should be reset with the msgz command.

The message buffer is shared and global, so a little care should be exercised when using it.

User Guide & Reference Scout SDK

November 1999 Page 60 of 68

 Program Block Library (subroutines)
The Scout has an extensive subroutine library of general-purpose functions that can help reduce the size of downloaded user
programs. Many of the subroutines expect parameters to be passed in local variables as outlined below.

The built-in subroutines are numbered 3-32 whereas user subroutines are numbered 0-2.

3 – MotorDriveSub (lvType)

Parameters: lvType: 0: A Fwd, BFwd 5: A Rwd, B Off 9: C Fwd (LocalVar1)
1: A Rwd, B Rwd 6: A Off, B Fwd 10: C Rwd
2: A Fwd, B Rwd 7: A Off, B Rwd 11: C Off
3: A Rwd, BFwd 8: A Off, B Off
4: A Fwd, B Off

Resources: lvType 0-8: Motor A, Motor B, lvType 9-11: VLL

Description: Set Motor AB or Motor C according to lvType. All local variables are preserved by the sub.

4 – BasicMotionSub (lvType, lvTime)

Parameters: lvType: 1: Forward 2: ZigZag (LocalVar1)
3: CircleRight 4: CircleLeft
5: LoopA 6: LoopB
7: LoopAB

lvTime: 1-32767 (LocalVar2)

Resources: Motor A, Motor B

Description: Performs one loop of the basic motion types. lvTime sets the duration of each step in the motion.
All local variables are preserved by the sub.

5 – AvoidSub (lvType, lvTime)

Parameters: lvType: 0: AvoidLeft (LocalVar1)
1: AvoidRight

lvTime: 1-32767 (LocalVar2)

Resources: Motor A, Motor B, VLL

Description: Performs the avoid sequence avoiding right or left. Avoiding right has random turn time.
lvTime, lvType and LocalVar4-8 are preserved by the sub.

6 – MovementsSub (lvType, lvTime)

Parameters: lvType: 0: Dance (LocalVar1)
1: Bug
2: Random
3: Jitter

lvTime: 1-32767 (LocalVar2)

Resources: Motor A, Motor B, VLL, Sound

User Guide & Reference Scout SDK

November 1999 Page 61 of 68

Description: Performs movement sequences and plays sounds.
lvTime and LocalVar4-8 are preserved by the sub.

7 – GetAverageLightSub ()

Parameters: None

Resources: None

Description: Measures the light level averaged over 5 samples and returns it in lvAvrLight (LocalVar1)
LocalVar4-8 is preserved by the sub.

8 – AutoAdjustLightSub (lvCenterLight, lvThPercent, lvHPercent)

Parameters: lvCenterLight 1-1020 (LocalVar1)
lvThPercent 0-100 (LocalVar2)
lvHPercent 0-100 (LocalVar3)

Resources: None

Description: Set LT, UT and H for the light sensor around lvCenterLight according to lvThPercent and
lvHPercent.
lvCenterLight, lvThPercent, lvHPercent and LocalVar5-8 are preserved by the sub.

9 – SeekSub (lvType, lvTime)

Parameters: lvType: 0: SeekDark (LocalVar1)
1: SeekLight

lvTime: 1-32767 (LocalVar2)

Resources: Motor A, Motor B, Sound

Description: Finds the direction of lowest or highest light intensity.
lvTime and LocalVar6-8 are preserved by the sub.

10 – FindBrightSub (lvBrightTH, lvBrightSteps)

Parameters: lvBrightTH: 1-1020 (LocalVar1)
lvBrightSteps: 1-32767 (LocalVar2)

Resources: Motor A, Motor B, Sound

Description: Finds the direction with a light level lower than lvBrightTH. Samples lvBrightSteps times.
lvBrightTH and LocalVar5-8 are preserved by the sub.

11 – GetMotorStatusSub ()

Parameters: None

Resources: None

Description: Gets the immediate state of motors A and B. StatusA returned in LocalVar1, StatusB in
LocalVar2. Status: 0: Off, 1: Fwd, 2: Rwd.
LocalVar3-8 are preserved by the sub.

User Guide & Reference Scout SDK

November 1999 Page 62 of 68

12 – Motor2SoundSub (lvStatusA, lvStatusB)

Parameters: lvStatusA: 0-2 (LocalVar1)
lvStatusB: 0-2 (LocalVar2)

Resources: Sound

Description: Plays a system sound according to lvStatusA and lvStatusB.
All local variables are preserved by the sub.

13 – LightGeigerSub (lvIntgLimit)

Parameters: lvIntgLimit: 1-32767 (LocalVar1)

Resources: Sound

Description: Enters looping forever playing a sequence of beeps at a rate proportional to the light level.
In the loop (kLightOffset – LightValue) will be added to the integrator followed by a 10ms Wait.
If the integrator exceeds lvIntgLimit a tone of kGeigerL2F * (kToneOffset – LightValue) Hz is
played for 10ms and the integrator is reset.
lvIntgLimit and LocalVar4-8 are preserved by the sub.

14 – FwdSub (lvDuration, lvTaskFlags)

Parameters: lvDuration: -32768 -32767 (LocalVar1)
lvTaskFlags: Bit15: 0-1 (LocalVar8)

Resources: Motor A, Motor B

Description: If Bit15 in lvTaskFlags is set Access Control is set up.
Sets up motor control: MotorA Fwd, MotorB Fwd.
After motor control is set up, the duration of the Sub is determined:
lvDuration

> 0 A Wait of lvDuration*10ms is performed
< 0 lvDuration is treated as an event list and a WaitUntilEvent is performed
= 0 Enters Looping forever

lvDuration and LocalVar3-8 are preserved by the sub.

The following subs works in the same way as FwdSub, but set up different motor control:

15 – RwdSub (lvDuration, lvTaskFlags)

MotorA Rwd, MotorB Rwd

16 – SpinRightSub (lvDuration, lvTaskFlags)

MotorA Fwd, MotorB Rwd

17 – SpinLeftSub (lvDuration, lvTaskFlags)

MotorA Rwd, MotorB Fwd

18 – FwdTurnRightSub (lvDuration, lvTaskFlags)

User Guide & Reference Scout SDK

November 1999 Page 63 of 68

MotorA Fwd, MotorB Off

19 – RwdTurnLeftSub (lvDuration, lvTaskFlags)

MotorA Rwd, MotorB Off

20 – FwdTurnLeftSub (lvDuration, lvTaskFlags)

MotorA Off, MotorB Fwd

21 – RwdTurnRightSub (lvDuration, lvTaskFlags)

MotorA Off, MotorB Rwd

22 – ZigZagSub (lvDuration, lvTime, lvTaskFlags)

Parameters: lvDuration: -32768 -32767 (LocalVar1)
lvTime: 1-32767 (LocalVar2)
lvTaskFlags: Bit15: 0-1 (LocalVar8)

Resources: Motor A, Motor B

Description: If Bit15 in lvTaskFlags is set Access Control is set up.
Does the ZigZag motion with lvTime between the steps.
lvDuration

> 0 ZigZag lvDuration times (loop)
< 0 lvDuration is treated as an event list and the ZigZag is performed until

the event happens
After expired duration Motor A and B are floated

= 0 ZigZags forever
lvDuration, lvTime and LocalVar5-8 are preserved by the sub.

23 – CircleRightSub (lvDuration, lvTime, lvTaskFlags)

Parameters: lvDuration: -32768 -32767 (LocalVar1)
lvTime: 1-32767 (LocalVar2)
lvTaskFlags: Bit15: 0-1 (LocalVar8)

Resources: Motor A, Motor B

Description: If Bit15 in lvTaskFlags is set Access Control is set up.
Does the CircleRight motion with lvTime between the steps.
lvDuration

> 0 Repeats CircleRight step lvDuration times (loop)
< 0 lvDuration is treated as an event list and the CircleRight step is performed until

the event happens
After expired duration Motor A and B are floated

= 0 Repeats CircleRight steps forever
lvDuration, lvTime and LocalVar5-8 are preserved by the sub.

24 – CircleLeftSub (lvDuration, lvTime, lvTaskFlags)

Parameters: lvDuration: -32768 -32767 (LocalVar1)
lvTime: 1-32767 (LocalVar2)
lvTaskFlags: Bit15: 0-1 (LocalVar8)

User Guide & Reference Scout SDK

November 1999 Page 64 of 68

Resources: Motor A, Motor B

Description: If Bit15 in lvTaskFlags is set Access Control is set up.
Does the CircleLeft motion with lvTime between the steps.
lvDuration

> 0 Repeats CircleLeft step lvDuration times (loop)
< 0 lvDuration is treated as an event list and the CircleLeft step is performed until

the event happens
After expired duration Motor A and B are floated

= 0 Repeats CircleLeft steps forever
lvDuration, lvTime and LocalVar5-8 are preserved by the sub.

25 – AvoidRightSub (lvMovTime, lvTaskFlags)

Parameters: lvMovTime: 1 -32767 (LocalVar1)
lvTaskFlags: Bit15: 0-1 (LocalVar8)

Resources: Motor A, Motor B

Description: If Bit15 in lvTaskFlags is set Access Control is set up.
Does the AvoidRight motion with lvMovTime between the steps.
All local variables except LocalVar2 are preserved by the sub.

26 – AvoidLeftSub (lvMovTime, lvTaskFlags)

Parameters: lvMovTime: 1 -32767 (LocalVar1)
lvTaskFlags: Bit15: 0-1 (LocalVar8)

Resources: Motor A, Motor B

Description: If Bit15 in lvTaskFlags is set Access Control is set up.
Does the AvoidLeft motion with lvMovTime between the steps.
All local variables except LocalVar2 are preserved by the sub.

27 – BugshakeSub (lvMovTime, lvTaskFlags)

Parameters: lvMovTime: 1 -32767 (LocalVar1)
lvTaskFlags: Bit15: 0-1 (LocalVar8)

Resources: Motor A, Motor B

Description: If Bit15 in lvTaskFlags is set Access Control is set up.
Does the Bugshake motion with lvMovTime between the steps.
All local variables except LocalVar2 are preserved by the sub.

28 – LoopABSub (lvMovTime, lvTaskFlags)

Parameters: lvMovTime: 1 -32767 (LocalVar1)
lvTaskFlags: Bit15: 0-1 (LocalVar8)

Resources: Motor A, Motor B

Description: If Bit15 in lvTaskFlags is set Access Control is set up.
Does the LoopAB motion with lvMovTime between the steps.
All local variables except LocalVar2 are preserved by the sub.

User Guide & Reference Scout SDK

November 1999 Page 65 of 68

29 – GetSema0Sub ()

Parameters: None

Resources: None

Description: Try to get access to a resource through gvSema0.
All local variables are preserved by the sub.

The following subs works in the same way as GetSema0Sub, but uses different global variables:

30 – GetSema1Sub ()

Uses GlobalVar1.

31 – GetSema1Sub ()

Uses GlobalVar1.

32 – InitSysSub ()

Parameters: None

Resources: None

Description: Initializes system registers.
All local variables are preserved by the sub.

User Guide & Reference Scout SDK

November 1999 Page 66 of 68

 VLL Command Set
The VLL command set consists of 128 distinct byte codes. Each code is interpreted in the receiving device and can have
different meanings in each device. A convention has been made though to have separate code groups for motor commands
and sound commands. For the MicroScout, ‘D’ signifies Direct commands and ‘S’ signifies Scripting commands.

VLL code Code Pilot MicroScout
0 Motor Forward D: Motor Forward
1 Motor Reverse D: Motor Reverse
2
3
4 Sound (Valve) D: Beep 1
5 Sound (Helicopter) D: Beep 2
6 Sound (Truck) D: Beep 3
7 Sound (Robot) D: Beep 4
8 Sound (Machine) D: Beep 5
9 Sound Mute
10 Motor Stop D: Motor Stop
11 Motor & Sound
12 Fixed Prgm Truck
13 Fixed Prgm Wheel Driver
14 Fixed Prgm Crash Buggy
15 Fixed Prgm Robot
16 S: Motor Forward 0.5
17 S: Motor Forward 1.0
18 S: Motor Forward 2.0
19 S: Motor Forward 5.0
20 S: Motor Reverse 0.5
21 S: Motor Reverse 1.0
22 S: Motor Reverse 2.0
23 S: Motor Reverse 5.0
24 S: Beep 1
25 S: Beep 2
26 S: Beep 3
27 S: Beep 4
28 S: Beep 5
29 S: Wait for Light
30 S: Seek Light
31 S: Code
32 S: Keep Alive
33 D: Run
34 D: Delete Script
35
36
37
38
39
40
41
42
43
44
45
46

User Guide & Reference Scout SDK

November 1999 Page 67 of 68

VLL code Code Pilot MicroScout
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70 D: Next
71 D: Reset
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96 Touch In
97 Touch Out
98
99 Tone C
100 Tone C#

User Guide & Reference Scout SDK

November 1999 Page 68 of 68

VLL code Code Pilot MicroScout
101 Tone D
102 Tone D#
103 Tone E
104 Tone F
105 Tone F#
106 Tone G
107 Tone G#
108 Tone A
109 Tone A#
110 Tone H (B)
111 Tone C
112 Number 0
113 Number 1
114 Number 2
115 Number 3
116 Number 4
117 Number 5
118 Number 6
119 Number 7
120 Number 8
121 Number 9
122 Decimal dot
123 Random
124 Speed/Torque Low (20)
125 Speed/Torque Med (40)
126 Speed/Torque High (60)
127 Tacho

	Foreword
	SOFTWARE DEVELOPER KIT LICENSE AGREEMENT AND WARRANTY DISCLAIMER
	Table of Contents
	Introduction
	Pre-requisites
	Document structure

	The Scout – brief description
	The Scout brick seen from the outside
	Output ports with LED indicators
	Touch sensor ports with LED indicators
	Build-in light input with LED indicator
	VLL output
	IR transceiver with LED indicator
	Buttons: ON/OFF, Select, Change, Run
	LCD display
	Sound output

	Inside the Scout: Basic functionality
	Stand Alone Mode
	Power Mode
	The Scout and the LEGO Remote

	Firmware system design - overview
	The Operating System
	The Program System
	System overview
	Resources available to the user
	Scout events
	Scout access control
	Communicating with the Scout

	The Program Block Library

	Installation
	Package content

	Getting started – ScoutDOS.exe
	Program arguments – example session
	Example programs
	Hello World
	Repeat after me
	Watch your step

	Getting started – ScoutTool.exe
	Advanced Monitoring

	Program syntax
	Commands
	Labels
	Comments
	Structures
	Pre-processor directives
	Mixing programs with direct commands
	Parameters
	Instructions/opcodes
	Opcode ‘absv’
	Opcode ‘andv’
	Opcode ‘boot’
	Opcode ‘calls’
	Opcode ‘chk’
	Opcode ‘chkl’
	Opcode ‘cntd’
	Opcode ‘cnti’
	Opcode ‘cnts’
	Opcode ‘cntz’
	Opcode ‘decvjn’
	Opcode ‘decvjnl’
	Opcode ‘dels’
	Opcode ‘delt‘
	Opcode ‘dir’
	Opcode ‘divv’
	Opcode ‘event’
	Opcode ‘gdir’
	Opcode ‘gout’
	Opcode ‘gpwr’
	Opcode ‘jmp’
	Opcode ‘jmpl’
	Opcode ‘light’
	Opcode ‘lsbt’
	Opcode ‘lscal’
	Opcode ‘lsh’
	Opcode ‘lslt’
	Opcode ‘lsut’
	Opcode ‘monal’
	Opcode ‘monax’
	Opcode ‘mone’
	Opcode ‘monel’
	Opcode ‘monex’
	Opcode ‘msg’
	Opcode ‘msgs’
	Opcode ‘msgz’
	Opcode ‘mulv’
	Opcode ‘offp’
	Opcode ‘orv’
	Opcode ‘out’
	Opcode ‘ping’
	Opcode ‘plays’
	Opcode ‘playt’
	Opcode ‘playv’
	Opcode ‘pollm’
	Opcode ‘pollp’
	Opcode ‘pwr’
	Opcode ‘remote’
	Opcode ‘rules’
	Opcode ‘scout’
	Opcode ‘setfb’
	Opcode ‘setp’
	Opcode ‘setv’
	Opcode ‘sgnv’
	Opcode ‘sound’
	Opcode ‘start’
	Opcode ‘stop’
	Opcode ‘subv’
	Opcode ‘sumv’
	Opcode ‘tmrs’
	Opcode ‘tmrz’
	Opcode ‘tout’
	Opcode ‘txs’
	Opcode ‘vll’
	Opcode ‘wait’

	Virtual machine specifics
	Sources

	Assembly program structure templates
	IF … ENDIF
	IF … ELSE … ENDIF
	WHILE … ENDWHILE
	DO … WHILE
	DO … UNTIL
	FOREVER … ENDLOOP
	LOOP … ENDLOOP
	SWITCH … CASE … ENDSWITCH
	ENTER EVENT CHECK … EXIT EVENT CHECK
	WAIT UNTIL EVENT
	ENTER ACCESS CONTROL … EXIT ACCESS CONTROL
	SEMAPHORE BASED GUARDED ACCESS
	TIMEOUT
	Measuring timeout with an extra variable
	Measuring timeout with an extra timer
	Timeout without all the fuss
	Timeout without timers

	General robotics programming topics
	Variables
	Outputs
	Speaker
	Display
	Inputs
	Events
	Physical events
	Virtual events
	Handling events

	Structured design
	Conditional behavior
	Repeated behavior
	Interruptible behavior

	Multi-tasking
	Synchronization

	Distributed systems
	Communication

	Program Block Library (subroutines)
	3 – MotorDriveSub (lvType)
	4 – BasicMotionSub (lvType, lvTime)
	5 – AvoidSub (lvType, lvTime)
	6 – MovementsSub (lvType, lvTime)
	7 – GetAverageLightSub ()
	8 – AutoAdjustLightSub (lvCenterLight, lvThPercent, lvHPercent)
	9 – SeekSub (lvType, lvTime)
	10 – FindBrightSub (lvBrightTH, lvBrightSteps)
	11 – GetMotorStatusSub ()
	12 – Motor2SoundSub (lvStatusA, lvStatusB)
	13 – LightGeigerSub (lvIntgLimit)
	14 – FwdSub (lvDuration, lvTaskFlags)
	15 – RwdSub (lvDuration, lvTaskFlags)
	16 – SpinRightSub (lvDuration, lvTaskFlags)
	17 – SpinLeftSub (lvDuration, lvTaskFlags)
	18 – FwdTurnRightSub (lvDuration, lvTaskFlags)
	19 – RwdTurnLeftSub (lvDuration, lvTaskFlags)
	20 – FwdTurnLeftSub (lvDuration, lvTaskFlags)
	21 – RwdTurnRightSub (lvDuration, lvTaskFlags)
	22 – ZigZagSub (lvDuration, lvTime, lvTaskFlags)
	23 – CircleRightSub (lvDuration, lvTime, lvTaskFlags)
	24 – CircleLeftSub (lvDuration, lvTime, lvTaskFlags)
	25 – AvoidRightSub (lvMovTime, lvTaskFlags)
	26 – AvoidLeftSub (lvMovTime, lvTaskFlags)
	27 – BugshakeSub (lvMovTime, lvTaskFlags)
	28 – LoopABSub (lvMovTime, lvTaskFlags)
	29 – GetSema0Sub ()
	30 – GetSema1Sub ()
	31 – GetSema1Sub ()
	32 – InitSysSub ()

	VLL Command Set

