LEGO® MindStor ms Scout

Softwar e Developers Kit

User Guide & Reference

ROBOTICS N
DISCOVERY

= I_ - S

230)
Usar Guide & Reference . Scout SDK

Foreword

At LEGO, we believe that imagination isimportant to the world. For decades, the LEGO construction materials have been
ameans for people of all agesto express creativity and make discoveries of their own. The addition of LEGO
programmable bricks brings a whole new dimension to construction.

The LEGO programmable bricks are microcomputers, which makes it possible to add functions or behavior to physical
creations made by LEGO pieces. The functions or behavior are controlled by means of programming.

LEGO has launched a new programmable brick: the Scout™ of LEGO® MINDSTORMS™ Robotics Discovery
System™. The programming software codes of this product have deliberately been designed to be easy to use - yet
versatile and powerful in function. This has been important to enable kids to use the new technology for creation of their
own personally meaningful inventions.

Thistechnical reference guide is published to allow more creative freedom in the programming for more experienced
users. The technical reference guide documents how the Scout™ can be programmed by means of LEGO Assembly
programs. We hope that the rel ease of this document will inspire even more people to develop imaginative applications of
the Scout™.

We kindly ask you to read the License Agreement and Warranty Disclaimer below before using this document.

We wish you good luck with development of creative applications.

LEGO - just imagine...

November 1999 Page 2 of 68

User Guide & Reference Scout SDK

SOFTWARE DEVELOPER KIT LICENSE AGREEMENT
AND WARRANTY DISCLAIMER

Li cense for the Software included in the LEGO M NDSTORMS Sof t ware Devel oper Kit (hereinafter
referred to as the Software) fromthe LEGO G oup.

| MPORTANT -- READ CAREFULLY: By using the information contained in this document you agree
to be and are hereby bound by the terns of this License Agreenent. If you do not agree to
the ternms of this Agreenent, do not use the information contained in this docunent.

I. GRANT OF LI CENSE:

The LEGO Group and its suppliers and licensors (hereinafter referred to as LEGD hereby
grant you a non-excl usive, non-comercial |license to use the Software subject to the
followi ng terns:

You may: (i) use the Software only to devel op applications for the LEGO
M NDSTORMS Scout ;
(ii) the applications devel oped by neans of the Software or parts hereof
shall only be used for purposes that neither directly nor indirectly
have any commercial inplications;

You may not:

(i) pernmit other individuals to use the Software except under the terns
|i sted above;
(ii) nodi fy, translate, reverse engi neer, deconpile, disassenble (except

to the extent that this restriction is expressly prohibited by |aw
or create derivative works based upon the Software;

(i) resell, rent, lease, transfer, or otherwi se transfer rights to the
Sof tware; or
(v) renove any proprietary notices or |abels on the Software.

I'1. ENHANCEMENTS OR UP- DATES:

This license does not grant you any right to any enhancenent or up-date.

111, TITLE

Title, ownership, rights, and intellectual property rights in and to the Software shall
remain with the LEGO Group. The Software is protected by national copyright |aws and
international copyright treaties. The comunication protocol is protected by a pending
patent application.

Title, ownership rights and intellectual property rights in and to the content accessed
t hrough the Software including any content contained in the Software nedi a denpbnstration
files is the property of the applicable content owner and may be protected by applicable
copyright or other law. This license gives you no rights to such content.

LEGO, the LEGO | ogo, the LEGO Brick and LEGO M NDSTORMS are some of the trademarks bel ongi ng
exclusively to the LEGO G oup.

If you want to | earn nore about how to use tradenarks and other proprietary rights bel ongi ng
to the LEGO Group please visit our web site: http://ww.l| ego.com

Al'l other trademarks nentioned in this docunent are the property of their respective owners.

November 1999 Page 3 of 68

230)
Usar Guide & Reference Scout SDK

I'V. DI SCLAI MER OF WARRANTY:
THE SOFTWARE | S PROVI DED FOR FREE W THOUT ANY KI ND OF NAI NTAI NANCE CR SUPPORT.

THE SOFTWARE | S PROVIDED AS | S W THOUT WARRANTY OF ANY KIND. TO THE MAXI MUM EXTENT

PERM TTED BY APPLI CABLE LAW THE LEGO GROUP FURTHER DI SCLAI M5 ALL WARRANTI ES, | NCLUDI NG

W THOUT LI M TATI ON ANY | MPLI ED WARRANTI ES OF MERCHANTABI LI TY, FI TNESS FOR A PARTI CULAR
PURPOSE, AND NONI NFRI NGEMENT. THE ENTI RE RI SK ARl SI NG OQUT OF THE USE OR PERFORVANCE OF THE
SOFTWARE OR APPLI CATI ONS DEVELOPED BY MEANS OF THE SOFTWARE REMAINS W TH YOU. TO THE MAXI MUM
EXTENT PERM TTED BY APPLI CABLE LAW | N NO EVENT SHALL THE LEGO GROUP OR | TS SUPPLI ERS BE

LI ABLE FOR ANY CONSEQUENTI AL, | NCI DENTAL, DI RECT, |NDI RECT, SPECI AL, PUN TIVE, OR OTHER
DAMAGES WHATSCEVER (| NCLUDI NG, W THOUT LI M TATI ON, DAMAGES FOR LOSS OF BUSI NESS PROFI TS,

BUSI NESS | NTERRUPTI ON, LOSS OF BUSI NESS | NFORVATI ON, OR OTHER PECUNI ARY LOSS) ARI SING QUT OF
THI' S AGREEMENT OR THE USE OF OR I NABILITY TO USE THE PRODUCT, EVEN |IF THE LEGO GROUP HAS
BEEN ADVI SED OF THE POSSI BI LI TY OF SUCH DAVMAGES. BECAUSE SOVE STATES/ JURI SDI CTI ONS DO NOT
ALLOW THE EXCLUSI ON OR LI M TATI ON OF LI ABI LI TY FOR CONSEQUENTI AL OR | NCI DENTAL DAMAGES, THE
ABOVE LI M TATI ON MAY NOT APPLY TO YCU.

V. TERM NATI O\

This license shall terminate automatically if you fail to conmply with the Iimtations
described in this Agreenent. No notice shall be required fromthe LEGO Group to effectuate
such termnation. On termnation you nmust destroy all copies of the Software and
appl i cations devel oped by neans of the Software.

VI . GOVERNI NG LAW

Thi s License Agreenent shall be governed by the laws of the jurisdiction, where you have
permanent residency. However, if the product is bought in USA the License Agreenent shall be
governed by the |laws of the State of Connecticut, without regard to conflicts of |aw
provisions, and if the product in bought in USA you consent to the exclusive jurisdiction of
the state and federal courts sitting in the State of Connecticut. This License Agreenent
will not be governed by the United Nations Convention of Contracts for the International

Sal e of Goods, the application of which is hereby expressly excl uded.

VI'1. ENTI RE AGREEMENT:

Thi s Agreenent constitutes the conplete and excl usive agreenent between the LEGO G oup and
you with respect to the subject matter hereof and supersedes all prior oral or witten
under st andi ngs, conmuni cations or agreenents not specifically incorporated herein. This
Agreement may not be nodified except in witing duly signed by an authorized representative
of the LEGO Group and you.

November 1999 Page 4 of 68

User Guide & Reference . Scout SDK

Table of Contents

FOREWORD ..ottt 2|
SOFTWARE DEVELOPER KIT LICENSE AGREEMENT
IAND WARRANTY DISCLAIMER ...t eeeeeeeeeeeeeeaeaeeeees 3|
ITABLE OF CONTENT S et ettt et e e e e et e e e e e eseaaanannas 5|
INTRODUCTIONoiiiiiiiiiiiei ittt e ettt e e e s etttteeaseasteeeeseenseseeessstessessssseneessanneeeas 10|
DT T B U ST, 11ttt eeee ittt et teteeeeete et et st eteeseeeeeeeeLe et eeceee e e Le £ e eELEeELe Lo L L ALt £e et Lt Lt L £ oL L Lt et Le Lt £ LAt eEerer e et ettt eeseneree et et seseserererens 10|
DDIOCUMEBNT SETUGCEUT ©.......coeeeeeeeeeeeeseeeeeeseeeeeeeseeaeeesseeeeessneneenesnenseeesnensenesnenssnesnenssnesnenssnesnenseneseenesnesnensenesneneenesees 10|
THE SCOUT — BRIEF DESCRIPTIONutiitiiiiitiisiisiisiissississossisssssssssassssssisssesssessssssssssns 11]
[The Scout Brick SEEN froM the OULSIE.cvivveee ettt e seeteeseeteneseseereneseeneseseesenessenesessenensesenens 11
DUEPUL POItS WITh LED INOIECEEOIS. ...ttt ettt e et esceeeesbeeeeeneeneeneeneeseeneeseearesneans 12
Touch SENSOr POrtS With LED INAICALOIS........eeiviiitieciiiit ettt steeesteesureeesseessseeesesessseeensesensesensesesseesasesessseeses 12
Build-in [ight TNPUE WITH LED INAICAEON ... ccviveeeeeeeeeee ettt e eees e eeeetaeneeteeneeneeeesassessensesseeseeseeseeseessensessensessenns 13
Y T T 13
R transCalVer WIth LED INGICAONcuccuiiiuiiieitiiitieiteeetecitecee st eeteeeteeeeeseeeseesseebeessesseesseesseesessesnsessessseesseessessessessenss 14
Buttons: ON/OFF, Select, Change, RUN ... 14]
O I IS T 15
SOUNT QULDULiveeceis et eeeseeteeeeteseteeeatesesesestessssessnsesanseesnsessnsessnsessnsessnsessnnessnsessnsessnsessnsessnsessnsessnsessnsessnsessnseesnsessnseessens 15
Inside the SCoUt: BASIC FUNCHIONAIITYcoueuverieeeieeseceiisietseesestceesesecessesteesseseseseestenssesesssesssesssssesseesssessssseesessssessssssessassseneas 15
SLANA AIONE IMOUE.......ccvieeteieetieectee ettt ettt e e tte et e eeteeeeteeeaseeeseeeaneeeseeeaneseseeeaneesnteaanseesnsesanseesntessnseesntesanseesnres 16
POWVET IMIOOE. ...ttt e et e e et eeeteeesteesseeensessaseeeaseesaseesaseesaseeeaseseaseesasseeaseeeaseeemseesasesenseeenbesenseesasessnsnesnses 18
The SCOUt aNA thE LEGO REMOLEcccvieeiieiiee ettt ettt e e ettt eeteeeeteeeeteeeseseabeeensessnseeenbesanseesnresesseesasesesseesnres 19
FIRMWARE SYSTEM DESIGN - OVERVIEW ..o 21|
YO A R A= L T 22|
[T PTOOE AM SYSEEIM ...ttt vt et eevereeserensesesenaeseseseesesesassesesesesesesesnssesesnssesnenssesnsnssesnenssesesnsseseeneas 22
S e A= 22
RESOUICES VAl BDIE 1O TNE USEYviiieviiiiiiecie ettt e e ettt e e eteeeebeeeasbeesaseesnbeesnseesabesenseesntesanseesnrens 23
S OUL BV ENTS.eoeeeii it iee et e ettt e e ittt eeeeitteeeeuseeeeeuseeeeaaseseeenseeeeaasseeeemnseeeeansseeensseeeemnseeasnnseeeensseeesansseessnsseesanssesesannesessnssnes 25
out access control OO PO OO PO OO PO OO PO OO PO OO OO PO OO FOF OO PO POV SO POT PO POV OO POTPUO PO PUPT PO PO OO POTPRPTPO 26
OMMUNI CBEING WITH TN SCOUL. ...ttt ettt e et et et e sbeebeeseeeaeeseeabeseeaneas 26
[THE PIOGEAM BIOCK LIDT@IY ...ttt seeereeserereeseresaesesenaesesesesesesssesnsseseenssesesnssesnsnssesesneseseenens 26|
TN NN N e N T 27|
PACKAGE CONTENTeve ettt ettt st es et e et seeeeneseeseseseeseneseeseneseesenessesenessesensssesesessesensssenessssenensesenesseseneasesenens 27|

November 1999 Page 5 of 68

230)
Usar Guide & Reference . Scout SDK

bETTING STARTED — SCOU T DO S EXE . ittt ittt ittt sisiesie s tetistessessesieiiateaseseszsrenieass 28|
Program ar gUMEeNts — €XAMPDIE SESSIONc.coveueureviueerieierereestesesesesseessesssesessssssesssssssosssssesssssssosssssessssssessesssessssssessossseneas 28|
| S LY R e ae T o 28
TN e o T 28

R EDEAE A LN TTIE......eeeviieceeeeete ettt ettt et tee ettt e e tee et e eteeeateeenteeenteeanseeenseesnseeanseeanseeanteeanseeanteeanreesntesenreesntesanreesnres 29
TS LR LU TS 0= 29
BETTING STARTED — SCOUTTOOL.EXE ...ttt ee e eaaaa 31|
R e L 31|
AR YIS R 33
| S LT Ay Lo 33
T 33
| ST L LT 8 YT 33
Ll UG UL ©5 1.t estesieeseesteeeeesteeseesseeseoesessseesessesesstseesesessesseeeseeseeseeeeseseesesestaeeetesesseeteee et saessesetesesenteeeeesssesesssessesesesenees 33
T e R 34|
Mixing programs With dir €0t COMMANTS.............cvoviueureeieeererieetietseeietseeteerseseresseeteesseesressssseessesssesssesesseesesssesessseessossseresnas 34|
S L o 34|
I e 35
PCOOE BISV ...ttt ettt ettt et ettt e e ettt e e eaetessssseeesansesasannseessnseeesansssessaneneasnbeeesanseeessnnesessanbeeesansessssannnesssnseresn 35
PCOUE “GNAVveeeeeeeeeeeeee ettt ettt et e e et e et e seeeeeeneeseeseeseeetesseeseeseenseeesseaseeseeneeneensesesseeseaneeneeneentenrearenreeneeneenrenteseearennen 35
DCOOE DOOLevieeeeiiieieeie et ett e et e et eeatee st e e eseeesateeeseeesaeeeaneeesasesaneessaseeanesssnsessnesssnsesansessnsessnsessnsessnsesssessntessnseesnrees 35
oo Lo o= LT 35
DPCOTE CHK ..ottt ettt ettt ettt e et eeaeeesutesesesesseeeasesesneeeasesssneeeanesesaeesnesssnseeanseesnneeansessnsessnsessnseesnsessnseesntees 35
DPCOME CHKI ...ttt et e et e et e et e eaeesaeesaeesseesseeasesaseessess et eebeessseseeasseasseassenssarsebsenbeenbesaresrsess 35
DPCOOE CIIEA ...ttt et e ettt e et e e esteesateeesteesaeeeeseeesaseeansessnseesasessnneesnsessnsessnsessnsessnsessnnessnsessnsessnressnseesnsessnreesrees 36
bpcode L 36
%pcode I 36
e Te o v 36
DDCOUE TECV I ...ttt ettt e e et e e et e e s eaaeeassateaesanneesesnseeasansesesannsssesannneesanssseesnnnsassnseeesanssssssnnssssssnsenesn 36
Dpcode ' decvinl ... 36
DIDCOUE TEIS ...ttt ettt e e e ettt e e ettt e s ettt e s ssteesestesesansneasansesasansssassnsseesansseeesnensessnsesesanssssssansnsessnseness 36
D00 TEIT ..ttt e ettt e et e e e et e sheesheettseteeaseeassehs et s eateebeebsereeassearseaesehssars e bsenrsenbesaresaress 37
DPCOTE DIl ..ttt ettt e et e eat e e st e e eaeeesaeeeeseeesaseeanesesnseeanesesmeeeanesesaeesansessasessnseesnsessnsessnsessnsessnseesnsessnseesntens 37
5pcode B TR 37
DDCOTE EVENE ...ttt ettt et e e eaeeesateeesesesseeeesesesseseasesesneeeanesesnesenesssnessanesssnsessnsessnsessnsessnsessnsessnseesnsessnseestees 37
DDCO0E OOl 37
DPCOOE ‘GOULceveeeeieeiteeeee ettt e et e e et e e eateesteeeateesteeenteeenseeansesanseesasesanseeantesanseeansesanseesnseasnseesnsesanseesntessnseesnsessnseesnrees 37
D00 OIOWVT .. tieiuiiiiteeette et ettt e it eeetteesateeesseesaseeesseesaseeesseesaseenseesase e nssesaneenseesaseesnsseeaseesaseeemseeaasssenseesabesenseesasesanreesnress 38
DPCOTE JITID ...ttt ettt ettt e et e et e e st eeetteesateeeseeesaseeanseesaseaenseesnseeasseesnseeanseesnseeanteaenseeanteeanreesntesenreesnreeanreesnrens 38
bpcode T 38
PCOOE LIONE ...ttt ettt ettt et e ettt e e ettt e s stk e e eastesssasaeeassaseeasassesesneseessanseeesanseeessnnsessanseeesansessssansnesssnseress 38
PCOOE ISoeceeeeteeteeteeeet e etee et et e et eeteeeteeeteeateeseeeseeeseeseesseanseaneeaseeaseaseenseenseenseeseesseesseesseenseensseneesseenseenteensenseneens 38
DPCOOE ISCAI" ...ttt ettt ettt ee et e et e et s seteesatessaseeansessnseesnsessaneesnsessmseesnseesnseesnsessnsessnsessnsessnsessseesnsessnreesnrens 38

November 1999 Page 6 of 68

User Guide & Reference Scout SDK
DIDCOE 1SN ...ttt ettt ettt e ettt e e eeatt e e st e e s sateeesanneesesanesaaeansesesamnessassmsneesansseeesnnnsessnsesesansessssansssessnsenes 38
o Teele LR o L T T 39
DDCOUE ISUL ...ttt ettt ettt e e sttt e e eeatesessaeeassnteaesanneesssanenessansesesamssesessmsneesansseeesnnnsessnsesesanssssssnnsssessnsenesn 39
OPCOAE “TNONEI"c.veeteeteeeete ettt ettt et e et et eeeteesteeseaneeaseeeseeeseanseenteenseesseassesseesseeseenseenssensssneenseenteensensensennenss 39
O oToTe s SR e T 39
DPCOTE “IMONE ..ottt et et e et et e eteeteeseeneeeeteseeaseeseaneeseeneenseseeasenseaseeseeneensessensessessessesneeneeseensessessesseens 39
DPCOTE TNIONED ..ottt e et e st e eateesateesstessaseeansessnseesnsessnneesnsessnsessnsessnsessnsessnnessnsessnsessnsessnseesnressnseesnress 39
f)pcode BT 0= S 39

PCOOE TTIST ...t eetieetee et eeetee et eeeateseatesensessnsessasessnsesensessnsessnsessnsesensessnsesensesansessnsessnsessnsessnsessnsessnsessnsessnsessnsessnseesrees 40
PCOOE NISTSveeveeeeeeeeeeeeeeeeeeeeeeeeseeseeseeseeeseeseeneeneesensessessesseeneeseensensessessessesssensessesessessessesseeneensensessessesseneeneessensessensesses 40
Qoo s CR S e A 40
OPCOOE “IMUIV ...ttt ettt et e et eeete e teeeeaneeeseeeseeeseenseenseenseeseeassesseesseesseenseenesenessseenseenseensennsennsennenns 40
OoTeTeTs ERe o 40
DPCOME “OFV' ...ttt et et e e e eateeuteeteesteesteesseeseenseaneeaneeaseanseenteenteenseassesseesteesseenseanseansseseenseenseensennsensesnenss 40
DIDCOME QUL ...ttt e e et e e ettt s eeateeessateeesesseesesnaneasansesesanneesesanesessanseeesamsseeesansneesansseessanensessnsesesanssssssnnssssssnsenen 40
OPCOOE PING’veeveeeteeteeteeteeteeee et e et eeteeeteeteeseeeteaeteesteesteenseeneesneesseesseesseenseanseensesseeseesseesseesseenseenseensseneenseenseensennsennsenenss 41
O oot SRS 2 41
Qoo s FER S L S 41
O oot T SR LAY 41
O oToT e TR Lo LT 41
DDCOUE PO ittt eteeette e ettt e ettt e saeeeesesesseeeesesesseseasesesneseanesssnesennesssnessnesssnseesnsessnneesnsessnsessssessnseesnressnseesrees 41
Lo Lo LI o 41
PCOOE TEIMIOUEeeeeieieeiieeetiee ettt e e eeteeeeeuteeesasteeesessesassasenesaansesesannssassanseesaansesesannssassasbnsesanseessannnsesssnsesesansessssansnesssnseres 42
PCOOE “TUIESeeeeeeeeeeeeeeeteee e tee e e te et eeteeeteeateenseeneeeseaeteenteenseenseaneesneesseenseenseenseaneessesssensseesseenseenseeneeeneenseenseesensenenss 42
OeTeTeTs ERES e TV 42
O el LR u o T 42
DIDCOME SELID ...ttt e ettt e e ettt e ettt e e eattee s sttt e s easeeseaenneeassnsesasannsesesaneeeesans ek e s amne e e e e aneneesanbeeeeeneneesanbeeesanneeseanrneessnreress 42
OPCOE SELV ...ttt et e e et e et e et eetteeteesteesteesteansesneesseesseesseenseenseanseaseeseesseessaeseenseanseenssssesnseenseensennsennsesnenss 42
DPCOOE SNV ...ttt et eetee e sttt eeteeesateeeseessseesasesesaeeeasesesnseeanesssnsessnssssnseeaneessnsessnsessnsessnsessnsessnsessnsessssessnseesnsessnseessees 43
5pcode BTN Te 43
@ oot EIE = S 43
Qoo e RS (o) o 43
DPCOOE SUBV' ...ttt et et e e ettt e sateeeseeesateeesesesaeeeaseeesneeeaneessaneeaneessnsessnsessnsessnsessnsessnsessnsessssessnseesnressnseesntees 43
bpcode SUIIV ettt ettt et et e etk e e e eh e a£eae e e e R £ b e eReeE£eR£eRe e e eE e b e eEeeE£eReene et eEeeEeeEeeReeneene et ebeareeresreaneas 43
DCOOE ‘TITITS' ...eiieiteieeeeie e ettt e e ettt e eeate e e sttt eeeestesesasseeassaseeasaansesesanansassasesesannsesesnsesassnbeeesanseeesamnesessanbeeesansessssnnsnssssnseresn 43
PCOOE “TMIZ ...ttt ee e e te et e eteeeteeteenseeneeeseeteesteenteanseaneesneeaseenseenseenseaneaeseesseesseesseenseenseeneeeseenseenseensensenenns 44
O oTeTeTs ER o TV A 44
O] Tee e LR T 44
O oTeTeTs SR K 44
DPCOOE ‘WALeeveeeeee ettt e e e eee et eeteeteeteeseeneeeeeesseaseeseaneeseeneeneeseaseasesneeseeneensessensessessensesneensessensessensenseens 44
erétoual T AT AR Yo R LTe Ny 45|
LU0 PP PP TP PP 45
DULDUL FESOUICTES ... veveeeeeieeesteeeeeeeeseeeseesseeteeseeeseesseesseeseensesnsesseesseesseenseenseansssseesseensennsenssenssennsesnsesneesseesseensennsennsenssesenss 416
REIMIOIE COMIMIBNGS. ...ttt ettt ettt ettt ekttt e st e et seese et et es et esseseeb e s esees et esees et eseeseaseseebeaseneesesseneebesseneeseseensenessensenessenes 47

ASSEMBLY PROGRAM STRUCTURE TEMPLATES......uiiiuiiiiiiiiiiiiiiiiiiessesaessiesaesaenans 48|

| S =T o Y 48|

T =TI = =0 1 = 48|

T = =N o Y T = —— 48|

DO . WHILE e 49]

| DY YIS o — 49|

November 1999

Page 7 of 68

230)
Usar Guide & Reference . Scout SDK

| O R Y= I = N o I T oo 49
LOOP ... ENDLOOPccoitetiitetetiieteteeieteteetetetteteteeteteteestetesetetessseseesssesessesesessssesessesensssesessesesesessssesensssesesssesessssesesseseressns 50|
BWITCH ... CASE ... ENDSWI T CH. .. oottt ittt eeeectetsssssssesssesetesesssessesescsesesessessssesessssssssesesesesesesasassssssnsnsesesasans 50|
ENTER EVENT CHECK ... EXIT EVENT CHECKc.cooiiitetiititctiietet ittt ettt eessaetessnesesssseresssesesssseseseseneas 51|
MVATT UNTIL EVENT Lottt st sae st ssesssssses st essssssesss s et s sesessssessses et ee st eeseses e b et eseses e s eh et ses et ensebes s ebesnsesesenseb s 52|
ENTER ACCESSCONTROL ... EXIT ACCESS CONTROL ..ocoovovveveteteieteteeeeiiieeseeseseseeeeterereeesesesesssssessssssssesesesesesesens 52|
BEMAPHORE BASED GUARDED ACCESS.......coiitiiitiiiisisisissesissessssssesssssesssssssssssessssessssssesssssessssessssssessssnsssessssssesnses 52|
| LI = T 53
M easuring timeout With an eXIraVariabl€..............c.cieiieeiieicccec ettt e te et e et e et e eneesteesteesreeareenseensens 53|

M easuring timeout WIth @n @XEFATIMEN ..ot et b be e eaee e anbesaesbesseeneaneans 53
IMEOUL WITNOUL @1 TNE TUSS ... eeeeeeicee ettt n e n et en e en et e aneenneenne s e e smeeaneenneenneenrennnennneas 54
T1MEOUL WITNOUE TIMIEIS.c.evinietiieiiet ittt sttt ettt eb s eb et eneeb e s e st ene b e neeneesesseneese st eneenessenseneneenes 54
GENERAL ROBOTICS PROGRAMMING TOPICSooveiieeeiiieeeeiieeeeeieeeeeiaeeseeeeneaaa 55|
YR 55|
DOULDULS ...ttt sttt ettt ee s st ess s ees et et et s ses s es st es s enb s s et et en s end st et st sttt st ans st st s nes 56|
S 56|
N A 56|
| T T T 57|
| S T 57
L T I 57
VATV oo 57|
HANAIING EVENES ... ettt ettt et et e e eeesteseeaneeseeneeseeneenseseeaseaseseeeseeneeneessensessessensesneeneessensessessesseens 57
STV I L= T 58
CONAITIONA] DENBVIOT ...ttt ettt e et e e et e eeeabesbeebeebeeneeneeseenbeseearesnenns 58
L s O A YT L 58
] oY o A LT 58

I UTE TEASKINIG ettt ee et ee et eneseeteneseeseneseeseneseeseneseeseneseeseneseesenessesenessesensssesenessesenessesensesereses 58
| S S e T e L T, 58
T R 59
[COMIMIUNICEIION.......veveeeeeeteeee ettt ees et et eeeeeseeseeeteseneseesenesteseneseesenessesesessesenessesenessesenessesessssesenesseressssereneee 59
PROGRAM BLOCK LIBRARY (SUBROUTINES) ...iiiitiiiietiiiiiiiieiiiiisiisieisisereiiseresieneasiseneas 60|
YIRS 60|
B —BasicM otionSub (IVTYPE, IVTIME) ... 60|
B — AVOIASUD (IVTYDE, INTIME) ...eoeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeereeseveeeeseeeceesesneeesnenenssesneneesneneesneneeesnensseenensessnensseesensererenear 60|

November 1999 Page 8 of 68

User Guide & Reference . Scout SDK

B —MovementSSUD (IVTYPE, IVTIMIE)c.cueieeeeeetieeeeeeteeeeeeetieeeteeteeteteeteeteteetesteseeseeteneesesseseesesseneesessensesessensesessensesessessenesnen 60|
[7 = GELAVET AELIGNTSUD () .voeoeveeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeseeeeseseeeeeesneeeeesnenessnenenesnenensseenesesneneessnenssesnenssssnenssessensererenear 61|
B—AutoAdjustLightSub (IvCenterLight, IVThPercent, IVHPE CENE)..........ccoveueveeereeeeeretieeeeteeeeeteeee et 61|
D — SEEKSUD (IVTYDE, INTIME) .eooeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeseseenesesneeesesneeeanenenssesnensensnenssesneneassnenssesnensessnenssesrenssrenenear 61|
[0 — FindBrightSub (IVBright TH, IVBIIGNESLEDS)cvevvvvevieieeeteeieetetieeeeteeeeeteteeeeteteeeeteteeseneteteeseseteseeseaseseseessseseeneserenas 61|
[L1 — GEEIM OLOT SEAEUSSUD () ...ttt s et seseseseeseeesseseseseesesessesesssssesesssesesnssesesassesnsasseenssssesssasssenssessensasseensas 61|
[12 — Motor2SoundSub (IVSLAtUSA, IVSEAEUSB)c.cveveveeieiietc ettt ettt ettt ee st resnenesenererenas 62|
R e e e N 62|
G S Y (N N N A Ere s N 62|
N R N e N G e D 62|
[16 — SpINRIghtSUD (IVDUF@tion, IVT aSKFIAGS)cveveeeeveieeeeeeieieeeeieieiettee e eeeseeteeeeeteeeseseeeeneseseeneneeneseesenessesesesseseneeseresens 62|
(17 — SPiNL eft SUD (IVDUTI @tiON, IVTASKEIAOS)c.eoveeeeeveeeseeeereeeeeeeeeeeseeeeseeeneeeseeensnesneeesneensnesncnseeeenesneenseesneenenesneeneneence 62|
18 — FwdTurnRightSub (IVDUration, IVTASKFIAG0S)c.cveiieeeietieeetiiteeeetecte ettt ettt eeeeteeteseeteereeeseeresseseeresreneareseas 62|
19 — RwdTurnL eftSUb (IVDUF atioN, IVT ASKETAGS)cvoveevveeeeveeeeeeeeeeseeeesesereeseseeeseseeessnseeeesesneeesesnenseeenessnenesesncneeeereneseas 63|
RO — FwdTurnL eftSub (IVDUration, IVTASKEIAQS)c.c.c.veveueueeeeerieeieteeeietieeeteeeveteteeieteeeeetetsesssesseseseseseseessseseenesereanas 63|
P1— RwdTurnRightSUD (IVDUF @tioN, IVTASKEIAGS)...........ceveeeeeeveeeeeeeeseeereesesereeseseseseseeeeeseeeesesneneessneneeesnceseesnenssesreneerenencas 63|
P2 —ZigZagSub (IvDuration, IVTIMe, IVTASKFIAQS)..........cecveuereiieeriieieteiiieteeeteteisieteeeteteeeeetenestetessenesesessesesssseseseseresnas 63|
P3 —CircleRightSub (IvDuration, IVTime, IVTASKFIAOS)c...ccoveeiueereeieeeersesecereesesesereeseseresseseesesseseeseeseesesesseseseseeseeneas 63|
P4 — CircleL eftSub (IvDuration, IVTIME, IVTASKFIAGS)..........cc.ccieievererieiereteieteteteeisieteteevsteteesieteesseseseesessssesessssesenseseresnas 63|
P5 — AvoidRight SUD (IVM OVTIME, IVTASKFIAGS) ...ttt seseteeser et ses et eessesenseseeessesesesanseseesnsasseseessesnsssesnsseas 64|
P6 — AvoidL eftSUD (IVM OVTIME, IVT ASKFTAQS).......cuevivevieiietetieieteteietet ettt ettt seeeseesteteneenetessesesessesenssseseseserenas 64|
P7 —BugshakeSub (IVM OVTIimMeE, IVTASKFTAGS)cucvvueerreeeeieeseereeseseveeseeseesesseeseeesseseresseseeessesesassesesssssessesssesssessesnssea 64|
P8 — L 0OPABSUD (IVM OVTIME, IVTASKFIAGS) .v.vv.veeveeeeeeeeieieeieeeieteeseeteeeeeseeeeeseeteneseeeeeeseseesenesessenenesseseesesessesenssseseneesesesens 64|
PO — GEESEMAOSUD () cvuviisisieitetetitiesesseseesssssesssssseeesesessssssesssesesesssssseeses et esesesse et e s ehesesesse e sesehesebes et es s e sesebebes s s s e nsesepebebanas 65|
B0 — GEISEMATOUD () wooveeerrreoeeeerrereeeeeermeeeeeeeroeeeeeeerroeeeeeerooeeeeeereoeeeeeeereomeeeeeereeeeeeeeeremeeeeeeeeoeeeeeerereeeeeerrereeeeeerereeeeeeereereeee 65|
BT — GEUSEMALSUD () overrrereerreeeeseeeerseeeerseeeerseeeenseeeesreeeesseeeesreeerseeeerreeerseeerseeeereeeerreeersreeersereesreeeesreeeeseeeesreeerreeeerreeerrrreerrr 65]
B2 — TTITESYSSUD () oooooooeeererememeeeeeeeeeeeeeeeeeeeeeeeeeeeeereemeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneeeeeeeeereeeeeeeeeeeeeeeeeeermeeeeeereeeeeeeeeeeeeeeeeeeeeereeereerereeee 65
| YT N Y N o T = 66|

November 1999 Page 9 of 68

230)
Usar Guide & Reference . Scout SDK

Introduction

This User Guide & Reference document tells you how to use ScoutT ool.exe and ScoutDOS.exe applications directly to
write programs for the LEGO® MINDSTORMS™ Scout™ programmabl e brick.

All examplesin this document are written as LEGO Assembly (LASM) programs, which is atext representation of the byte
code commands that the Scout can execute, providing detailed control over the Scout.

Pre-requisites

No other software is required but you must have a LEGO serial cable and an IR Tower from another MindStorms set such

as LEGO MindStorms Robotics Invention System 1.0 or 1.5. Y ou may also purchase a combined IR Tower and cable pack
(item W979713) over the Internet from jvww.pitsco-legodacta-store.com|(select “RoboLab”, then “RoboL.ab Components”
and finally “Infrared Transmitter and Cable Pack (PC and MAC)").

Document structure

Therest of the document contains:

» amore technical description of the Scout,

* how toingtall and usethe SDK,

» what byte code assembly commands are available and what they do,

e gtandard program structure templates, and

e genera programming issues to consider and be aware of when controlling robot systems.

This document is not intended to be a compl ete textbook on the art of programming or the art of robotics or any such related

area. Instead it is hoped that it will provide a correct technical description of how to program the Scout at the most detailed
level in order to get as much as possible out of all the functionality it provides.

November 1999 Page 10 of 68

http://www.pitsco-legodacta-store.com/

User Guide & Reference . Scout SDK

The Scout — brief description

In this part a brief introduction is given to the basic concepts of the Scout.

The Scout is developed with the RCX asa‘big brother’ but targeted at lower age and lower price. Therefore alot of the
elements of the RCX are reused, some are |eft out and a range of new elementsis put in, partly to accommodate the lower
age, partly from hard earned experiences with the RCX.

The Scout brick seen from the outside

The size of the Scout is the same as the RCX. It uses the same battery box, containing 6 AA battery cells. Also the
placement of buttons, sensor inputs and motor outputs is consistent with the design of the RCX.

VLL Output
Light sensor
IR Transceiver
' -‘ L
Shieci] oo Touch Light Ehun.;i Touch Sensor
[Inputs
Buttons < SOt A
LCD Display

nime SCOUT| FX

LED Indicators
Outputs

November 1999 Page 11 of 68

Usar Guide & Reference . Scout SDK

Output portswith LED indicators
Forward Reverse

Time SCOUT| FX

Motor A Motor B

The Scout has two motor output ports: Motor A and Motor B. Connection to the ports is made with the standard LEGO 2-
wire terminal system. Motors can be turned On and Off and their direction and power level can be set.

As a global control you can connect and disconnect a motor, set normal or inverse direction and set a maximum power
level. Global motor control works as illustrated bellow:

Normal/ Connect/
Max. Power Inversedirection Disconnect Motor
Output Control Register | o
— — ¢

Power to the motor output ports is selectable in 8 levels. In Stand Alone mode (see Stand Alone Mode) the motors always
run at full power. Direction of the motors can be set to Forward or Reverse.

Control of the motor outputs can be obtained in four different ways:
e From adownloaded program

e By direct command from the IR Tower

e Using the LEGO Remote Control

» By PB Message from another P-Brick

To each motor output there are two green LED’ s indicating motor direction when the output is ON. Try to connect a motor
to an output. Don't turn the Scout On. Then turn the motor and look at the indicator LED’s. Isn’t that cool ?

Touch sensor portswith LED indicators

Touch 1 { A Touch 2

, (

Motion Touch Light

LED Indicators

November 1999 Page 12 of 68

User Guide & Reference . Scout SDK

The Scout has two touch sensor input ports: Touch 1 and Touch 2. Connection to the ports is made with the standard LEGO
2-wireterminal system. Only the LEGO touch sensor type, with optional resistor identification, is supported at these inputs.

Sensor values are:

Booleanvalue: Oorl (Released or Pressed)
Raw value: 0to 255

The Sensor ID can be read in the Sensor Type Register. In this way the program inside the Scout or an application is able to
see which kind of touch sensor is connected to a certain input. Three I D-touch sensors are available: Red, Y ellow or White.

For each touch sensor ayellow LED isindicating when the sensor is activated (pressed).

Build-in light input with LED indicator

LED
Indicator

Light sensor

The light sensor performs measurement of the surrounding light level.
Values of the sensor are:
State value: Dark, Normal or Bright
These states are determined using an upper threshold, a lower threshold and a hysteresis set up
for the light sensor: When the raw sensor value is below lower threshold the state is Bright,
above the upper threshold it is Dark, elseit is Normal.
Raw value: 0-1020 (Low value: Bright, high value: Dark)

In Stand Alone mode the light sensor is automatically calibrated at start up. The surrounding light level is measured and
upper- and lower threshold is set 12.5% above and below this center value. Hysteresisis set to 3.12% of the center value.

A yellow LED indicates when the light sensor isin Dark or Bright states.

VLL output

VLL
Output

The Visible Light Link (VLL) output can send VLL codes.

November 1999 Page 13 of 68

Usar Guide & Reference . Scout SDK

The VLL output can be controlled from the user program or through direct IR commands. If a Motor C button on the LEGO
Remote Control is pressed, the corresponding motor control command will be sent on the VLL output.

The VLL signals are transmitted using visible red light through an optical fiber.

The MicroScout has VLL-input. Motor and sound can be controlled and a program can be scripted into the MicroScout
through the VLL link. This can be done from a program in the Scout, or by using the Scout as the “intermediate agent” it
can be done from an application, from the LEGO remote control or from another P-Brick (Scout/RCX).

In the future more bricks equipped with VLL input/output may appear.

IR transceiver with LED indicator

IR Transceiver

Indicator

R - #~(8
ac (

Motion Touch Light

The IR transceiver unit is used to communicate with a PC through the IR Tower (using the Scout low-level protocal), to
receive remote control commands and to communicate with other P-Bricks through the PB Message system.

A green LED indicates IR Transceiving.

Buttons: ON/OFF, Select, Change, Run

Motion Touch Light
Select Silect, | g Changdl Change

OOl Runl |

ON/OFF | Run
Time SCOUT FX ™

Four buttons and an LCD display form the primary user interface.

Motion| Touch Light

Buttons are:
* On-Off
Turns the Scout ON or OFF. Press the On/Off-button
and hold it down a couple of secondsto reset the Scout.
e Select Time SCOUT| FX
Moves the focus to the next group on the display
* Change
Changes the setting of the group in focus Metion Touch Light
* Run

Runs the program, if any, of the selected mode

Time SCOUT| FX
November 1999 Page 14 of 68

User Guide & Reference

Scout SDK

L CD display

Statusline —p

Motion

Touch

Light

Forward
ZigZag
Circle@)
LoopAB

Reverse
Avoid
WaitFor
Brake

Seek@x
Avoid
WaitFor

Brake

Do [, DY CX

000

SOkETR

Time

The LCD display is divided into seven groups:

Motion

Scout

Selection of basic motion patternsin Stand Alone mode

Touch

Selection of touch sensor rulesin Stand Alone mode

Light

Selection of light sensor rulesin Stand Alone mode

Time

Selection of time scaling factors in Stand Alone mode

FX

Selection of special effects theme in Stand Alone mode

Scout

Mode selection: Stand Alone — or Power mode

Status

Display of status information:
Download indicator, Power mode program folder, Run indicator, Battery low symbol

Sound output

To output sound the Scout is equipped with a piezo sound element.
Sounds can be played by using the built in system sounds with the sound sets or by playing atone with a certain frequency
(asaconstant or from avariable) for a certain time:

SoundSet (No)

PlaySystemSound (No)

PlayTone (Frequency, Time)
PlayToneVar (VarNo, Time)

FX

On/Off

[

Sound can globally be turned On and Off.

I nside the Scout: Basic functionality

November 1999

Page 15 of 68

230)
Usar Guide & Reference . Scout SDK

The Scout is operated in two different modes: Stand Alone mode and Power mode.
The user sets the mode of operation by selecting the Scout-group on the display and then change to the desired mode.

Stand Alone M ode

The first thing you will notice turning the Scout On in Stand Alone mode is the sound of the heartbeat. A subtle beating
sound in the background telling you, that the Scout is alive.

In this mode the Scout has full IR-link capabilities for direct control, but primary user interaction and programming is
performed through buttons and L CD-display. No programs can be downloaded.

Choosing one and only one rule (command) from each programming group does programming of the Scout. Y ou use the
Select and Change buttons to navigate the groups of the display and change the selection in the groups. When the rule
selection is done, press the Run button and the Stand Alone program will be running.

In the M otion group the basic default motion pattern is selected. The options are:

* No Motion (0)

. o~
Fprward (1) Forward \Reverse Sesek{ll
* ZigZag (2) ZigZag |Bvold Aveid

« CircleRight (3) Circlelid

o CircleLeft (4) rake EEF:B;-':‘.I
L AG LEEE

. ngﬁ B Ea? Qo0 M=% &g TE
e LoopAB (7)

When an event triggers arule from one of the other groups, and motor control is wanted, the default motion is interrupted.
After this action is completed the Scout will return to default motion. When No Motion is selected the Scout will simply be
waiting for the event driven action of the other groups to happen.

In the Touch group the rule for the two touch sensors is selected. All the rules uses both touch sensors. Therules are:

e Ignore (0)

 Reverse (1)
When T1 or T2 is hit direction on both motorsis changed Forwa £\ kG

* Avoid(2) ZigZag(Avold Aveid
When T1 is hit the model will back up and turn to the right Circle(y) WaltFor WaitFor
When T2 is hit the model will back up and turn to the left LoopAR\ Brake ABrake

.« WaitFor (3) oo] ==
The model waits for T1 or T2 to get hit, then action starts 00 A= HETH

* Brake(4)

While T1 is pressed, Motor A is braked
While T2 is pressed, Motor B is braked

The Light group contains the light sensor rules:

November 1999 Page 16 of 68

User Guide & Reference . Scout SDK

* Ignore (0)
» SeekLight (1) .
Model turns around every now and then and finds the brightest direction ;f'nz:"d EHT;* iﬂﬂﬂlﬁ'
« Seek Dark (2) i W Ll i
Moqel turns around every now and then and finds the darkest direction E‘::ﬁ? :r:ﬁ:' g:tk:” '
e Avoid (3) ooy [B
If it gets Bright or Dark the mode!l will back up and turn away oo0 B AdTE

e WaitFor (4)

The model waits for the light to get Bright or Dark, then action starts
» Brake(5)

While the light is Bright or Dark both motors are braked

In the Time group you select the Time Scaling factor of the Stand Alone Program System. In all of the Program Blocks
used in the Stand Alone Program System timing values are scaled with this factor. Settings are:

Forward | Reverse Seek {1}
. ZigZag |Avoid Avoid
» Short (0, onecircle) Scalefactor 1 Circled| WaltEor WaltFor
* Medium (1, two circles) Scale factor 2 LoopAB | Brake Brake

« Long (2, threecircles) Scale factor 4 < nﬂE}D ﬁﬂﬁ#
i

|.e. the fewer circles, the faster the program will run.

Inthe FX group a Special Effects Themeis selected. Each theme has a Sound Set that will take effect on all the event
triggered sounds in the Scout. FX Theme selections:

Forward | Reverse Seek({i|
* No Theme (0) ZigZag Avoid Awveid
* Bug(l) Does the Bug-dance every now and then Circle(Ch WaltFor WaitFor
« Alam(2) Alarm-sound depending on the motor drive "::;E B]EEE- Brake
* Random (3) Does a sequence of random movements now and then
3 s 000 B K AETHE

e Science(4) Sound beeping Geiger function on the light sensor

When the program runs in Stand Alone mode, a background task is waiting for PB Messages and does actions depending on
the incoming message value. The messages 1, 2 and 3 are used to start a special effect:

PBM 1. Seek dark
PBM 2: Seek light
PBM 3: The Bug dance

When the special effect isfinished the Scout will return to the default motion (as with any FX selected in the program).

Messages 4-12 are used to do basic motor drive control:

PBM 4: Forward A Fwd, B Fwd
PBM 5: Reverse A Rwd, B Rwd
PBM 6: Spin right A Fwd, B Rwd
PBM 7: Spin left A Rwd, B Fwd
PBM 8: Turnright (forward) A Fwd, B Off
PBM 9: Turn left (reverse) A Rwd, B Off
PBM 10: Turn left (forward) A Off, B Fwd
PBM 11: Turnright (reverse) A Off, B Rwd
PBM 12: Stop A Off, B Off

After half a second the motor drive started by a PB Message will time out and the Scout will return to the default motion. In
thisway an RCX can repeatedly send PB Messages to stay in control. The motor control made by the RCX will override the

November 1999 Page 17 of 68

230)
Usar Guide & Reference . Scout SDK

default motion. If a sensor event or a special effect takes place it will interrupt the PB Message controlled motion (just as it
would with the default motion).

Y ou could e.g. program a Scout for Forward motion and Avoid touch. Then program an RCX to send PBM 10 repeatedly
when Touch sensor 1 is pressed and PBM 8 when Touch sensor 3 is pressed. Thusthe RCX can be used to remote steer the
Scout by overriding the Scout default motion. If one of the touch sensors on the Scout is hit, the Avoid sequence will be
started, even if the remote steering from the RCX is active.

Power M ode

In Power mode the user can interact with the Scout from an application through e.g. the LEGO IR Tower. The
communication is done using the IR link and the Scout Low Level protocol.

In this mode you can perform direct control of the Scout from an application, you can poll data from the Scout and you can
download a program to be run from the Power mode Program System.

The VLL Output can be used for programming or controlling other devices equipped with VLL Input.
Pressing the Run button in Power mode runs the Power mode program if any.

Pressing the Select button will have no effect (Error sound).
Pressing the Change button will change to the Stand Alone mode.

November 1999 Page 18 of 68

User Guide & Reference . Scout SDK

The Scout and the LEGO Remote

The LEGO Remote Control can be used to control the Scout without having to touch the buttons. PB Messages can be sent,
basic motor control can be performed, programs can be started and stopped and a sound can be played.

Button Action

Message 1 PB Message 1 is sent: SeekDark

Message 2 PB Message 2 is sent: SeekLight

Message 3 PB Message 3 is sent: BugDance

A A Motor A Forward while button is pressed

Av Motor A Backward while button is pressed

B A Motor B Forward while button is pressed

Bv Motor B Backward while button is pressed

Ca VLL output (red LED/Motor C) sends Forward command while button is pressed
Cv VLL output (red LED/Motor C) sends Backwards command while button is pressed
Sound Play RemoteSound

Stop Stop running program (Stop all tasks)

The program buttons are used to run programs:

November 1999 Page 19 of 68

Usar Guide & Reference .

Scout SDK
P1-P4 Set Scout in Stand Alone mode
Stand Alone Setup according to table bellow
Run Stand Alone program
Program Model Motion Touch Light Time FX
Pl Bug 1 ZigZag Avoid Ignore Short Bug
P2 Bug 2 Forward Avoid SeekLight Medium Bug
P3 Intruder Alarm Loop AB Ignore WaitFor Medium Alarm
P4 Hoop-o-bot Loop AB Ignore Ignore Short Random
P5

November 1999

Set Scout in Power mode

If Power mode program is present (Task 0 is not empty):
Run Power mode program (Start Task Q)

Page 20 of 68

User Guide & Reference

Scout SDK

Firmware system design - overview

In this part an overview is given on the structure of the firmware system. The Scout at top level consists of three parts: The
Operating System, the Program System and a Program Block Library (Subs):

Scout
0s PS PBL
Scout resour ce overview
Random 3Timers 2 Counters
generator 3 TimerLimits 2 CounterLimits
SystemSetupReg IR Transceiver
PwrDwnRelReg
BatteryStatusReg
VLL LED
10 Global
variables Light sensor
Vaue, Raw 49
PBM essage Input 1 _ |8bitAD
ID, Vaue, Raw
5 SASetupRegs Input 2 a
ID, Vaue, Raw
Output A/B Motor
SoundFeedbReg OutputStatusReg drivers
OutputControlReg
OutputSetupReg
For each task (6):
AccessControlReg
TaskEventReg Output C VLL
8 Local variables OutputStatusReg output
OutputControlReg
OutputSetupReg
ROM RAM
Task O|| Task 1|| Task 2 || Task 3|| Task 4 || Task 5 Task Of| Task 1 || Task 2| Task 3|| Task 4 || Task 5
Sub3 || Sub4 || Sub5 || Sub 6 —» | Sub 32 SubO || Sub1 | Sub2
SndSet 0| SndSet 1|| SndSet 2|| SndSet 3 || SndSet 4
November 1999 Page 21 of 68

230)
Usar Guide & Reference . Scout SDK

The Operating System
The Operating System performs:

* Hardwarel/O
Sensor input, Motor output, Sound output, VLL output, IR 1/O, Button input, LCD display output.
e Basic system control
Scheduling execution, battery surveillance, power down control etc.
» Control of Downloading in Power mode
* Interpretation of Scout Low Level Commands
From direct control or from program control.
» Execution of the Program System
Running programs in Stand Alone —, or Power mode.
e System control through registers
e Priority control
e Event generation, sound feedback.

The Program System

The Program System has two different modes of operation reflecting the Stand Alone — and Power modes of the Scout.

* Stand Alone mode:
The PSisrun from a set of ROM Tasks and is “programmed” by setting up the 5 Stand Alone Setup values: Motion,
Touch, Light, Time and FX. A subset of the Program Blocksin the library is used in Stand Alone mode.

* Power mode:
The PS runs from a set of downloaded RAM Tasks. All of the Subs in the Program Block Library can be freely used.
Also user Subs can be downloaded and used from the RAM Tasks.

The Program System interfaces to the Operating System through a number of global and mode specific resources.

System overview

Tasks

A program consists of one or more tasks running in parallel. Pressing the Run button starts Task 0.

A task contains a stack of commands that are executed in a sequence. A task can start and stop other tasks and call
subroutines.

» The Stand Alone program consists of 6 fixed tasks placed in ROM. These tasks cannot be accessed in Power mode.
» A Power mode program consists of up to 6 tasks placed in RAM.

Subroutines
A subroutine contains a stack of commands that are executed in a sequence.

When execution of the subroutine reaches the end, program execution is returned to the task that called the subroutine (at
the point just after the call). A subroutine cannot call another subroutine.

* The Scout has alibrary of fixed subroutinesin ROM.
» Up to three subroutines can be downloaded to RAM.

November 1999 Page 22 of 68

User Guide & Reference . Scout SDK

Global set up
Global settings of the Scout:

» Select the mode of the Scout (From PC or via button interface)

e Turn the sound On and Off (From PC or within program)

e Select one of 5 sound sets (From PC or within program)

» Set the power down time (From PC or within program)

e Select short or long IR range (Only from PC)

Resour ces available to the user

Hardwar e resour ces

Hardware resources are the physical devices available from the outside of the Scout.

Inputs:

Touch sensor 1 and 2

Vauesare:

» Touch sensor state value: Pressed or Released
» |D number of the touch sensor connected to the port: 1DO, ID1 or ID2

Light sensor

Values are;

e Light sensor state value: Dark, Normal, Bright or Undefined
e Light sensor raw value: 0-1020 (Low value: Bright, high value: Dark)

The state values of the light sensor are generated from the raw value passing upper and lower trigger levels. These trigger
levels are calculated using three light sensor parameters:

» Upper Threshold UT
* Lower Threshold LT
e HysteresisH

A Light (Raw)
UT-H LT+H
uT L Upper trigger level
P
LT Lower trigger level
Dark
Bright /r
» p >
/]
Normal Norr/nal Normal Time

November 1999 Page 23 of 68

230)
Usar Guide & Reference . Scout SDK

Outputs:

Motor A, Band C

Motor Cisdirected to the VLL output.
Immediate motor state settings:

On/Off
Forward/Reverse direction
Power level 1-8 (not motor C)

Globa motor settings:
Connect/disconnect
Normal/Inverse direction
Maximum power level 1-8 (hot motor C)
The current setting of a motor can be read in the Motor Status Register.
Sound
Sound is controlled in three ways:
Play one of 28 system sounds
System sounds 0 to 9 are placed outside the sound set system.

System sounds 10 to 27 are sound set dependable.
5 fixed sound sets are available.

Play atone for sometime
Give afixed tone frequency or take the frequency from a variable.

L et the operating system give sound feedback on events.
System sounds 10 to 24 are used by the operating system to give sound feedback on the 15 Scout events.
System sound 25 is the special ‘Dance’ sound. System sound 26 is the special ‘Bug’ sound. System sound 27 isthe
specia ‘Random’ sound.
Timer 0 event is used to generate the heartbeat.

Feedback on each event can be turned On and Off.

Visiblelight link (VLL)

Turn the VLL diode On or Off

Send aVLL code.

Softwar e r esour ces

Software resources are those available inside the Scout system.
Variables

* You canload avariable with a constant or copy almost any Scout system value.
* You can perform mathematical operations on and between variables (add, subtract, multiply, divide, AND, OR, etc.).

Global variables:

November 1999 Page 24 of 68

User Guide & Reference . Scout SDK

» 10global variables (all tasks can see them)

Local variables:

e 8local variables (each task can only see its own locals)

Stand Alone programming variables

e 5 stand aone programming variables make up the programming of the Stand Alone Scout.
Can be set through the button interface in Stand Alone mode or by command in Power mode.
Random generator

» Can generate a random number between 0 and X.

Timers

» 3timerseach with a user defined timer limit.

* Resolution of the timersis 100ms.

» Atimerrunstoitslimit and isthen reset to zero by the operating system.

* When atimer reachesits limit, it generatesa Timer X on limit event.

* You can copy atimer value into a variable and you can reset atimer to zero.

Counters

» 2 counters each with a user defined counter limit.
* When acounter reachesitslimit, it generates a Counter X on limit event.
* You can copy acounter value into avariable, you can increment or decrement it by one or you can reset it to zero.

M ailbox

» One mailbox, that can be loaded (via IR) with a message value between 1 and 255.
* You can copy the contents of the mailbox into a variable or you can reset the contents to zero.

Scout events
e 15events

Touch 1 pressed
Touch 1 released
Touch 2 pressed
Touch 2 released
Light entering Light state
Light entering Normal state
Light entering Dark state
1 Blink detected (a blink time can be set up)
2 Blinks detected
10. Counter 0 on limit
11. Counter 1 on limit
12. Timer 0 on limit
13. Timer 1 onlimit
14. Timer 2 on limit
15. Mail received
* Sound feedback on events can be turned On and Off.

©CoOoNoOA~WNE

November 1999 Page 25 of 68

230)
Usar Guide & Reference . Scout SDK

e You can let the operating system check events for you and you can act on the events when they happen.
Y ou can define a section inside which ajump to a specified label is performed when an event happens.
Y ou can define alist of events and when one of these events happens, the OS will jump and release the event checking.
When an event has released the event checking state the actual releasing event can be read in atask local event register.

* You can send an event to the Scout viathe IR-link and the Scout will act asif the event happened.

Scout access control

One of the basic problems to be solved in the Scout is the control of access to common output resources. From the RCX
coding environment it has been seen, that it is very difficult to determine program flow when more than one task (running in
parallel) are controlling the same output devices e.g. motors. The basic paradigm of access control is:

* Oneand only one task can have access to an Output Resour ce at the time.

In the Scout, thisis done by defining Access Control Sections:

» An Access Control Section contains a block of commands using a set of output resources.
» AnAccess Control Section is characterized by a priority level, a set of output resources and a resume point.

Conflicts on access to resources are resolved by Section Priority.

Example:

A task isrunning in an Access Control Section with a certain priority level and involving Motor A control.
Another task enters an Access Control Section of same or higher priority level also involving Motor A control.

Result: Execution of the first task will be returned to the resume point of the section.
Theinterrupting task will start execution of its Motor A control program section.

Communicating with the Scout

Communicating with the Scout is done through the IR-link.

e Commands from an application through the IR Tower. Direct commands or downloads of programs.
Thisis done through the Ghost optionally using Assembler, Block splitter or other Ghost utilities.

e Commands from the Remote control.
» PB messages from another Scout or an RCX.

An application can get any data from the Scout by uploading data blocks of variable size.

The Program Block Library
The Program Blocks Library is a collection of Program Blocks contained in subroutines. The Library is placed in ROM.

Each Task has a set of local variables. When a Task calls a Program Block (subroutine) it uses these local variablesto set up
the desired functionality of the Block.

From a program these blocks can be used as macro commands: By setting up local variables and calling the subroutine, alot
of functionality is achieved easily.

November 1999 Page 26 of 68

User Guide & Reference . Scout SDK

Installation

Simply extract all the files from the installation into the same directory. If desirable the target directory can be added to the
PATH environment variable.

Package content

The two SDK downloads should consist of the following files:

ScoutSDK . pdf

ScoutTool.exe

ScoutTool.pdf

ScoutDOS.exe

Lasm.dll
Scout.dll
PbkComm32.dl|

PbkM ouse.exe

ScoutDef.h

“Samples’ folder

Helloworld.txt
RepeatAfterMe.txt

WatchY ourStep.txt

The document you are reading now

An interactive Microsoft Windows application for programming and monitoring various aspects
of the Scout. Great for experimentation.

An online help document explaining how the ScoutTool.exe application works.

A Microsoft DOS command line application for translating and downloading Scout byte code
assembly programs and commands. Can be used as a back-end for other programming systems.

Assembler kernel
Scout specific information
P-Brick Communication

A utility function to resolve conflicts between serial mice and IR Towers — used by
PbkComm32.dll.

Useful macros and definitions for general Scout byte code assembly programs. Most of the
examples in this document assumes that the program contains a:

#include “ ScoutDef.h”
directive or that the relevant #define macros are available.

Thisfolder contains a few sample programs to help show some of the various capabilities and
structure of LASM

Simple LASM command to make the Scout play a sound
Simple LASM program that plays 5 notes, one after the other

Not-so-simple LASM program that implements event/sensor watchers for the timer and touch
Sensors

If files are missing, please check back at http://www.legomindstorms.com|for updates or new information.

November 1999

Page 27 of 68

http://www.legomindstorms.com/

230)
Usar Guide & Reference . Scout SDK

Getting started — ScoutDOS.exe

To get you started, some sample programs and download sessions are included below. They show you how to execute direct
commands and how to download both a simple program and a not-so-simple sensor watcher program. For detailed
descriptions of the commands see | nstructions/opcodes|

Program arguments — example session

The ScoutDOS.exe program simply takes one or two filenames as parameters. The file isthen compiled and, if no errors
were found, downloaded. Status is output to the console window or DOS box (‘ stdout’). The result from executing direct
commands may be output to the second optional file name and that file will then be overwritten.

To see the effect for yourself, run the ScoutDOS.exe program in an MS-DOS (Command) Prompt from the directory where
you installed the files. Alternatively you can call the program (as a shell) with filename parameters from another program.

This may look like:

d.txt

1creasing freguency sweep

Tt result.txt

The exact display may change depending on your program files and installation directory.

Example programs

Hello World
The Scout equivalent of the famous ‘C’ Hello World program is to get the Scout to play a sound. The following example
shows this (the program is so simple, you have to type it in yourself).

/1 System sound 3 is an ascendi ng frequency sweep
pl ays 3

The effect of executing ScoutDOS.exe with the file should be an almost instant sound feedback from the Scout.

November 1999 Page 28 of 68

User Guide & Reference Scout SDK

Repeat after me
The following program calls a subroutine five times to play the note ‘A’ raised an octave between each time.

#i ncl ude “Scout Def. h”

#defi ne TASK_MAI N 0
#defi ne SUB_PLAY 0

#define LOCAL_VAR 0 10
#define LOCAL_VAR 1 11

; This subroutine plays a note for half a second,
the frequency is passed in a |local variable
sub SUB_PLAY
pl ayv LOCAL_VAR 0, FR_M5 500
wai t SRC CON, FR_M5 500 + FR_M5 50 ; the Scout has no sound buffer so put in
; waits to get the timing right.
ends

task TASK_MAI N
setv LOCAL_VAR_ 1, SRC CON, 5 ; the nunber of iterations
setv LOCAL_VAR 0, SRC CON, TONE_A5 ; the note 'A
startl oop_| abel :
decvjn LOCAL_VAR 1, endl oop_| abel ; decrenent the | oop variable and
; exit the loop if it becomes negative
calls SUB_PLAY
mul v LOCAL_VAR_ 0, SRC CON, 2 ; doubling the frequency equal s
; raising the note one octave
jmp startl oop_| abel
endl oop_| abel :
endt

The effect of downloading the program and pressing the ‘ Run’ button should be that you hear the note ' A’ played five times
and raised an octave between each note (the last note may be hard to hear).

Watch your step

The following program sets up atimer to generate an event every second and then watches both touch sensors for being
pressed. The timer generates a heart beat pulse, whereas the touch sensor watcher plays another sound when a sensor is
pressed.

#i ncl ude "Scout Def. h"
#define TASK MAIN O
#define TASK TOUCH 1
#define TASK TIMER 2
#define LOCAL_VAR 0 10
#define LOCAL_VAR 1 11

task TASK_MAI N
cinitialization

out QUT_OFF, QUTLI ST_AB ; turn notors off
setfb SRC_CON, FBMASK_NO FB ; shut the system up
tnrs 0, SRC CON, CR SEC 1 ;. wait a second

; start sensor watchers
start TASK_TOUCH
start TASK_TI MER

endt

November 1999 Page 29 of 68

230)
Usar Guide & Reference Scout SDK

task TASK TOUCH
starttask_| abel :

nmone SRC _CON, EVENT_TPR, wat chercode_| abel

forever_| abel :
jnmp forever _| abel ; wait here until (one of) the event(s) happens

wat cher code_| abel :

pl ays SND_BEEP

jnmp starttask_| abel
endt
task TASK_TI MER
starttask_| abel :

none SRC_CON, EVENT_TMR1, watchercode_| abel

forever_| abel :
jmp forever_| abel ; wait here until the timer triggers

wat cher code_| abel :
pl ays SND_CLI CK

jmp starttask_| abel
endt

Instead of just playing sounds, the touch sensors could control motor power or something similar.

Remember to press the ‘Run’ button to actually start your program.

November 1999 Page 30 of 68

User Guide & Reference . Scout SDK

Getting started — ScoutTool.exe

The preceding chapter dealt with the command line application ScoutDOS.exe which is good for batch processing or for use
as a back-end for another system. To help with experimentation and to support the program development and debugging
process, another application, ScoutTool.exe, is supplied.

ScoutTool .exe provides an Interactive Development Environment (IDE) with a Graphical User Interface (GUI) anditisa
32-bit Microsoft Windows application.

The main screen looks like this;

% Soout Tool HiE E
Communicaton Commands M s Lz Program
T _ o |
| CioseGhas | | tianstain | Hep |
Lins: 1
Pfirick: Range = Q
£ Shot = Lorg
PHnck Mods
Powse | Siand Akone |
Phusntom Evernts
Shate Chasck Ll ;IJ

Touch 1 |

Touch 2 |

Communication Shabus Dipack Uzer Commands Sew Light |
_Seebah |

1 Biink |

PEKOF. paect1 | Dreci2 | D3 |
See Dk
Last Transtation Feesul | = - |
=
I -] - | =l RENES

There are anumber of buttons to control the set-up of the Scout and the communication between the Scout and the PC.
The text boxes are used to write Scout byte code assembly programs, which can be downloaded and run.

There are also facilities for writing small collections of user commands that are immediately run when the Direct User
Commands buttons are pressed.

There are some status fields that show the result of trandating the user programs or commands or the communication status.

Lastly, there are a collection of buttons to generate simulated events that the Scout can recognise and may react to.

Advanced Monitoring
By pressing the Advanced button you get to see the Advanced Monitoring screen:

November 1999 Page 31 of 68

Usar Guide & Reference . Scout SDK

Advanced Monitoring

o | Mo || Jo
m __ — —

 i—

Y ou can start and stop the program and use the display to get dynamic feedback on what the program sees — this may help
you to understand your programs behavior.

The ScoutTool.exe application is explained in more depth in the document ScoutT ool.pdf.

November 1999 Page 32 of 68

User Guide & Reference . Scout SDK

Program syntax
The main elements of LEGO Byte Code Assembly (LASM) programs are described in the sections below.

Commands
A command consists of the opcode/mnemonic and a (possibly empty) list of parameters, such as:

opcode [args, .. arg

Commands are separated by NEWLINE characters; i.e. there can be at most one command per line.

The parameters can be expressions using numerical operatorssuchas‘+', *-*, **’, ‘[’ bit operatorssuchas‘~', ‘&’, ‘[,
relational operatorssuchas‘<’, ‘>", ‘<=", ‘>=", ‘==", ‘1=’ and logical operatorssuchas‘&&’ and ‘||’

Please note that the trandator is case sensitive and that all commands use lower case.

Labels

Labels are symbolic program addresses that can only be used within the same structure they are defined in. Labels are not
allowed together with immediate commands. Since no immediate commands use labels, their useis flagged as explicit
errors rather than safely ignoring them.

A label isan aphanumeric string at the beginning of a new line immediately followed by a colon, asin:

MyLoopLabel : opcode [arg:, ... arggl

Labels may be indented with space and TAB characters.

Comments
Everything on aline after a semicolon (*;") or a C++ style comment header (‘//’) istreated asa comment, asin:

MyLoopLabel : opcode [arg:, .., argnl ; this is where ny |loop starts

For convenience, ‘C’ style comments (“/* ... */*) are also allowed.

Structures
In the programs, tasks and subroutines are used as the main structuring units. The structures begin with ‘task id’ or ‘sub id’
and are terminated by ‘endt’ and ‘ends’ respectively.

Everything outside the scope of atask or a subroutine (a structure in general) is considered a direct command.

opcodel argl ; a direct comand
t ask 0 ; task O is the main task
MyLoopLabel : opcode2 argl, ... ; this is where ny |oop starts

; this is inside a structure,
; so |abels are all owed

endt ; end of main task
sub 2 ; a user subroutine
ends

November 1999 Page 33 of 68

Usar Guide & Reference Scout SDK

Pre-processor directives
To improve the structure and readability of the source files, afew standard ‘' C’ type pre-processor directives will be
supported:

/1 Useful synbolic nanes for command ar gunment SOURCE.
#defi ne SRC_VAR 0
#defi ne SRC_CON 2

#define MASK OxFFFF
#defi ne VALUE MASK & 123456

[/ useful for 16 bit val ues
/1 macros can contai n expressions

// Either sone conmon code/ sub/task or
/1 common definitions |ike above.

#i ncl ude “useful stuff.asnt

andv array_base + 3, SRC _CON, VALUE

The #define macros do not currently accept parameters. There is a nesting limit of 16 with #include and #define macro

expansions.

By using the *//" comment format in include files, useful definitions can be shared between assembler and C/C++ programs

as header include files.

// use the macros in commands

Mixing programs with direct commands

The ScoutDOS.exe program can al so execute direct commands, and it is possible to mix program elements (tasks and

subroutines) with direct commands so that one can set up a complete system from within the same program.

Parameters

In the assembler command list below, the following abbreviations are used:

Abbreviation Explanation

‘sre’, ‘sl’, 's? The source of anumber, i.e. itstype or origin

‘va', ‘vl’, ‘'v2 The ‘value' of anumber, i.e. what element of the type that its source tells

‘number’, ‘nl’, ‘n2, ‘n3,
‘n4d’,'n5’,

A direct number

‘onoff’ A Boolean expression

‘motors’ A hit field list of the affected motors

‘eventlist’ A bit field list of the relevant events

‘resour ces A bit field list of the accessed resources
‘commands’ A bit field list of the requested remote commands

‘label’, ‘relative address,
‘offset’, ‘adr’

All addresses in commands that can jump to different program instructions are relative to
the address field inside the byte code command. They can either be specified directly asa
(signed) number or by reference to alabel. The assembler will then compute the offset,
when it knows the addresses of both the label and the program instruction.

Offsets come in two sizes: short (-128 to 127) and long (-32768 to 32767).
Using labelsis by far the safest option, as the assembler knows about the necessary field

offsets and address cal culations. Besides, carefully named labels can help in documenting
the program.

‘relop’

Relational operator for comparisons: 0 (greater than), 1 (less than), 2 (equal to) and 3
(different from).

For the exact bit masks see the last section in this chapter.

November 1999

Page 34 of 68

User Guide & Reference . Scout SDK

| nstructions/opcodes
The following section lists, in alphabetical order, al the byte code assembly commands for the Scout brick and the legal
parameter sources. Legal ranges for each source type are listed later in the document.

Opcode ‘absv’
Sets variable ‘number’ with the absolute value of the given value

absv nunber, src, va

Legal range for ‘src’: O (variables) or 2 (constants).

Opcode ‘andv’
Setsvariable ‘number’ with the result of the bit wise AND of the given value and variable ‘ number’

andv nunber, src, val

Legal range for ‘src’: O (variables) or 2 (constants).

Opcode ‘boot’
Starts the Power mode command interpreter in the P-Brick, if the string matches the handshake. Only possible as a direct

command.

boot nl, n2, n3, n4, n5

The handshake numbers are “LEGO®” as ASCII values (0x4C, 0x45, 0x47, Ox4F, OXAE).

Opcode ‘calls
Executes subroutine ‘number’. The firmware does not support subroutinesto call other subroutines. Only possible asa
program command.

calls nunber

Legal range for ‘number’: 0-32 (0-2 is user subroutines, 3-32 is the built-in system subroutines - see “Program Block
Eibraryf).

Opcode ‘chk’
Checks the condition and jumps to ‘adr’ (short offset) if the condition evaluates to FALSE. Only possible as a program
command.

chk sl, vl1, relop, s2, v2, short adr
Legal rangefor ‘sl’ and ‘s2’: O (variables), 1 (timers), 2 (constants), 3 (motor status), 9 (sensor value), 12 (raw sensor
value), 15 (IR message), 17 (output setup), 18 (stand alone setup), 21 (counter), 23 (task event register) and 24 (event sound

feedback register). Only the first parameter source/value pair can indicate a constant value (2).
Legal range for ‘relop’: O (greater than), 1 (lessthan), 2 (equal to) and 3 (not equal to).

Opcode ‘chkl’

chkl sl, vl, relop, s2, v2, long adr

As above, but with along relative address offset

November 1999 Page 35 of 68

Usar Guide & Reference

Scout SDK

Opcode ‘cntd’
Decrements one of the built-in counters.

cntd nunber

Legal range for ‘number’; O-1.

Opcode ‘cnti’
Increments one of the built-in counters.

cnti nunber

Legal range for ‘number’; O-1.

Opcode ‘cnts

Sets the counter value (for overflow detection and event generation).

cnts nunber, src, val

Legal range for ‘number’; O-1.

Legal rangefor ‘src’: O (variable), 2 (constant value) and 4 (random value)

Opcode ‘cntz’
Clears the given counter.

cntz nunber

Legal range for ‘number’: O-1.

Opcode ‘decvjn’

Decrements the (loop) variable ‘number’ and jumps if the value becomes less than zero (negative). Only possible as a

program command.

decvjn nunber, relative address

Legal range for ‘“number’: 0-17 (0-9 are global variables and 10-17 are local variables to the task).

Opcode ‘decvjnl’

decvj nl nunber, relative address

As above, but with along relative address offset.

Opcode ‘dels

Deletes one or all subroutines. Only possible as a direct command.

del s [nunber]

Legal range for ‘number’: 0-2.

November 1999

Page 36 of 68

User Guide & Reference .

Scout SDK

Opcode ‘délt’
Deletes one or all tasks. Only possible as a direct command.

del t [nunber]
Legal range for ‘number’; 0-5.
Opcode ‘dir’
Changes the direction of the listed outputs.
dir action, notors
Legal range for ‘action’: 0 (backward), 1 (change direction), 2 (forward).
Legal range for ‘motors': 1-7 (a bit mask).
Opcode ‘div’
Divides variable ‘number’ with the given value

di vv nunber, src, val

Legal range for ‘src’: O (variables), 2 (constants).

Opcode ‘event’
Makes the Scout behave as if one or more events had occurred

event event | i st

Legal range for ‘eventlist’: 1-32767 (abit mask for the 15 possible system events).

Opcode ‘gdir’

Changes the global direction settings of the listed outputs, so that all subsegquent normal motor direction commands will be

overridden:

gdir action, notors

Legal range for ‘action’: 0 (backward), 1 (change direction), 2 (forward).
Legal range for ‘motors': 1-7 (a bit mask).

Opcode ‘gout’

Changes the master output status of the listed outputs, so that all subsequent normal motor power commands will be

overridden.

gout action, notors

Legal range for ‘action’: O (float), 1 (off), 2 (on).
Legal range for ‘motors' isabit-mask: 1-7.

November 1999

Page 37 of 68

230)
Usar Guide & Reference . Scout SDK

Opcode ‘gpwr’
Master output power instructions for motors, so that all subsequent normal motor power commands will be overridden.

gpwr notors, source, nunber

Legal range for ‘source’: 0 (variable), 2 (constant value) and 4 (random number) — all limited to 0-7
Legal range for ‘motors': 1-7 (abit mask)

Opcode ‘jmp’

Go to the given address (short offset) and continue the program from there. Only possible as a program command.
jmp short relative address

Opcode ‘jmpl’

As'‘jmp’ but with long offset.

j mpl long rel ative address

To minimize program size, try to use the short form and only when the trandation complains, change to the long form.

Opcode ‘light’
Turnsthe VLL output (the red LED) on or off for decorative purposes

i ght onof f

Legal range for ‘onoff’; 0-1 (Boolean).

Opcode ‘Isbt’
Setsthe Light Sensor Blink Time

| sbt src, val
Legal range for ‘src’: O (variables) and 2 (constant values).

Legal range for ‘val’: 1-32767 (measured in 0.01 s)

Opcode ‘Iscal’
Uses ambient light levels for setting up the light sensor trigger levels. This command sets upper and lower thresholds and
the hysteresis for the light sensor.

| scal

This command takes no parameters.

Opcode ‘Ish’
Setsthe Light Sensor hysteresis

I sh src, val

Legal range for ‘src’: O (variables) and 2 (constant values).
Legal range for ‘val’: 0-1020.

November 1999 Page 38 of 68

User Guide & Reference . Scout SDK

Opcode ‘Idlt’
Setsthe Light Sensor low threshold

| slt src, val

Legal rangefor ‘src’: O (variables) and 2 (constant values).
Legal range for ‘val’: 0-1020 (alow value indicates a bright environment).

Opcode ‘Isut’
Setsthe Light Sensor upper threshold

| sut src, val

Legal range for ‘src’: O (variables) and 2 (constant values).
Legal range for ‘val’: 0-1020 (alow value indicates a bright environment).

Opcode ‘monal’
Triesto grab the listed resources at the requested priority or jumps to address if unsuccessful. Also jumpsto addressif pre-
empted later on. Only possible as a program command.

nonal resources, address

Legal range for ‘resources’: 0x01-0xO0F (a bit mask).

Opcode ‘monax’
Stops monitoring the (last) set of resources. Only possible as a program command.

nonax
This command takes no parameters.

Opcode ‘mone

Setsthe event list to interrupt normal execution flow and jump to address ‘label’ on detection. Only possible as a program

command.

none src, val, |abel

Legal rangefor ‘src’: O (variable), 2 (constant value) and 4 (random number).

Opcode ‘monél’
As‘mone’ but with long offset

nonel src, val, | abel

To minimize program size, try to use the short form and only when the trandation complains, change to the long form.

Opcode ‘ monex’
Stops event monitoring. Only possible as a program command.

nonex

This command takes no parameters.

November 1999 Page 39 of 68

230)
Usar Guide & Reference . Scout SDK

Opcode ‘msy’
Sends the given value as an 8-bit P-Brick message

nsg src, nunber
Legal rangefor ‘src’: 0 (variable) and 2 (constant value).
Opcode ‘msgs
Sets the P-Brick message (buffer) by mimicking receipt of a message that also generates an event. Only possible as a direct

command.

nsgs number

Legal range for ‘number’; 0-255.

Opcode ‘ msgz’
Clears the P-Brick message (buffer)

nsgz
This command takes no parameters.

Opcode ‘mulv’
Multiplies variable ‘number’ with the given value

mul v nunber, src, val

Legal range for ‘src’: O (variable) and 2 (constant value).

Opcode ‘ of fp’
Turns the P-Brick off

of fp

This command takes no parameters.

Opcode ‘orv’
Sets variable ‘number’ with the result of the bit wise OR of the given value and variable ‘ number’

orv nunber, src, val

Legal range for ‘src’: O (variable) and 2 (constant value).

Opcode ‘out’
Changes the status of the listed outputs.

out action, notors

Legal range for ‘action’: O (float), 1 (off) and 2 (on).
Legal range for ‘motors': 1-7 (a bit mask).

November 1999 Page 40 of 68

User Guide & Reference . Scout SDK

Opcode ‘ping’
Checks that a P-Brick is available. Only possible as a direct command.

pi ng
This command takes no parameters.
Opcode ‘plays
Plays a given system sound
pl ays number
Legal range for ‘number’: 0-27.
Opcode ‘playt’
Plays atone with a given frequency for a given duration

pl ayt freq, duration

Legal range for ‘freq’: 30-20000 (Hz).
Legal range for ‘duration’: 1-255 (measured in 0.01 s)

Opcode ‘playv’
Plays atone with a given frequency (read from variable ‘number’) for a given duration. Thisis useful for playing music
because a variable may be manipulated in many ways (such as being multiplied by 2) before being played again.

pl ayv nunmber, duration
Legal range for ‘duration’: 1-255 (measured in 0.01 s)
Opcode ‘pollm’
Retrieves a memory snapshot. Only possible as a direct command.

polIm adr, size
Legal range for ‘adr’;: 0x0040-0x0440.

Legal range for ‘size’: 1-150.
‘adr’ + ‘size’ cannot exceed 0x0440.

Opcode ‘pollp’
Retrieves the ROM and Firmware RAM versions if the magic numbers are correct. Only possible as a direct command.

pol I p nl, n2, n3, n4, nb5
The magic numbersare: 1, 3,5, 7, and 11.

Opcode ‘pwr’
Sets the power level for the listed outputs

pwr motors, src, val

Legal range for ‘motors': 1-7 (a bit mask).
Legal range for ‘src’: O (variable), 2 (constant value) and 4 (random number).

November 1999 Page 41 of 68

230)
Usar Guide & Reference . Scout SDK

Opcode ‘remote’

Sends the same remote commands as the buttons on the hand held device. The Scout does not reply to remote commands.
Remote motor commands time out after 125 ms, so the remote control repeatedly sends the keys that the user is pressing.
When the keys are released, a special remote command is sent to allow the non-motor related commands to be handled
again (those that don't repeat their effect). To mimic that behavior from the PC, it is necessary to interleave such key release
commands. Only possible as a direct command.

renote comands

Legal range for ‘commands’ : 0x0000-0xFFFF (see “ Remote commands)] for a description of the bits).
All buttons correspond to asingle bit in the 16-bit ‘commands’ value. The motor commands can be combined with the other
commands (but only one forward or reverse command per motor).

Opcode ‘rules
Selects Scout Motion, Touch, Light, Time and FX rules for the Scout Stand Alone mode.

rul es notion, touch, light, tine, fx

See “|nside the Scout: Basic functionality| for the legal ranges of the various rule groups.

Opcode ‘scout’
Selects Stand Alone (SA) or Power mode

scout nunber
Legal range for ‘number’: 0 (Stand Alone mode) and 1 (Power mode).
Opcode * setfb’
Selects which (external) events should result in a system sound being played

setfb src, val

Legal sourcesare: O (variable), 2 (constant value) and 4 (random number).
The resulting value has the same structure as an event list with each bit corresponding to a system event.

Opcode ‘ setp’
Setsthe task priority to be used for access control. Only possible as a program command.

setp number

Legal range for ‘number’: 0-7 (with 0 being the most important/highest priority).

Opcode ‘ setv’
Sets variable ‘number’ to the given value

setv nunber, src, val
Legal rangefor ‘src’: O (variables), 1 (timers), 2 (constants), 3 (motor status), 4 (random number), 9 (sensor value), 10

(sensor type), 12 (raw sensor value), 15 (IR message), 17 (output setup), 18 (stand alone setup), 21 (counter), 23 (task event
register) and 24 (event sound feedback register).

November 1999 Page 42 of 68

User Guide & Reference . Scout SDK

Opcode ‘sgnv’
Setsvariable ‘number’ with the result of the sign test of the given value

sgnv nunber, src, val
Legal rangefor ‘src’: 0 (variable) and 2 (constant value).
Opcode ‘sound’
Controls global sound settings (allows a‘ mute’ functionality) and selects which schemeis currently used for system sounds
10-27:

sound sound_enabl e, sound_onoff, soundset_nunber
Legal range for ‘sound_enable': 0 (disregard ‘ sound_onoff’ and select ‘ soundset_number’ for the system sounds) and 1
(disregard ‘soundset_number’ and use ‘sound_onoff’ to globally control all sounds).

Legal range for ‘sound_onoff’: 0 (mute all sounds) and 1 (allow sounds to pass through).
Legal range for ‘soundset_number’: 0 (NoSoundset), 1 (Basic), 2 (Bug), 3 (Alarm), 4 (Random) and 5 (Science)

Opcode ‘start’
Starts executing atask from the beginning or restartsit if it was aready running

start nunber

Legal range for ‘number’; 0-5.

Opcode ‘stop’
Stops execution of one or all tasks

stop [nunber]

Legal range for ‘number’; 0-5.

Opcode ‘subv’
Subtracts the given value from variable ‘ number’

subv nunber, src, val

Legal range for ‘src’: O (variable) and 2 (constant value).

Opcode ‘sumv’
Adds the given value to variable ‘ number’

sumv nunber, src, val

Legal range for ‘src’: O (variable) and 2 (constant value).

Opcode ‘tmrs
Sets the timer limit (for overflow/wrap-around detection and event generation)

tnrs nunber, src, val

Legal rangefor ‘src’: O (variable), 2 (constant value) and 4 (random number).

November 1999 Page 43 of 68

Usar Guide & Reference .

Scout SDK

Opcode ‘tmrz’
Clearsthe given timers

tnrz nunber

Legal range for ‘number’; 0-2.

Opcode ‘tout’
Sets the power down time (time-out) in minutes.

t out tinme

Legal range for ‘time’: 0-255 (0 means never).

Opcode ‘txs
Sets the P-Brick transmit power level.

t xs range

Legal range for ‘range’: 0 (low level/short range), 1 (high level/long range).

Opcode ‘vII’
Sends a 7-bit VLL command out over the VLL output

vl | sour ce, numnber

Legal range for ‘source’: 0 (variable) and 2 (constant val ue).

Opcode ‘wait’

Pauses the execution of the task for a given number of 10 ms. Only possible as a program command.

wai t src, val

Legal range for ‘src’: O (variable), 2 (constant value) and 4 (random number).

November 1999

Page 44 of 68

User Guide & Reference

Scout SDK

Virtual machine specifics
The Scout has the following characteristics:

Sour ces
Source | Item Value Explanation
0 Variables 0-9 Variables 0-9 are shared global variables
10-17
Variables 10-17 are local to each task and the sub routines it may call. This alows
safe parameter passing to sub routinesiif it refers to the passed local variables.
It also means that commands involving variables have different legal ranges
depending on whether they are direct or program commands.
1 Timers 0-3 Timers are free running global counters with aresolution of 100 ms(i.e. 10 ticks
per second).
When reset, they immediately start running (again).
2 Constants -32768 to Usudly
+32767
3 Output Status | 0-2 Bit 0-2: Power
Register Bit 3-3: Direction; 1 — Forward, 0 — Reverse
Bit 4-5: Output no.
Bit 6-6: 1- Break, 0 — Float
Bit 7-7: 1—On, 0 - Off
4 Random 1-32767
9 Sensor Value | 0-2 This register contains the processed sensor value.
10 Sensor Type This register contains the sensor type
1 = Normal Touch Sensor
5 =1D0 Touch Sensor (Yellow)
6 =1D1 Touch Sensor (Red)
7 =1D2 Touch Sensor (White)
12 Sensor Raw This register contains the raw 8 bit A/D converted value
15 PB Message 0
17 Output Setup | 0-2 See source 3
Register
18 Stand Alone 0-4 Contains the rule selection for the five groups:
Setup
0—Motion
1-Touch
2—Light
3-Time
4—-FX
19 Light Sensor 0-3 Contains the light sensor control parameters
Parameters
0 — Upper Threshold
1 - Lower Threshold
2 —Hysteresis
3—Blink Time
The register iswrite-only — it cannot be queried by user programs.
November 1999 Page 45 of 68

Usar Guide & Reference

Sour ce

Item

Value

Explanation

20

Timer Limit

0-2

Timers generate events when they reach their limit. After reaching thelimit, a
timer isautomatically reset and without a set limit atimer doesnot run at all.
Setting atimer limit also automatically resets the timer.

To achieve RCX like timer behavior, the limit should be set to the maximum value
(32767).

21

Counters

22

Counter Limit

Counters are specid to the Scout and behave in many ways as specia global
variables, with the limitation that they can only be reset (to zero), incremented and
decremented.

Counters generate events when they reach their limit.

They can act as score keepers in some competitive applications where atask can
monitor the counter limit as the end of the game, or atimer can generate time-out
warnings.

23

Task Event
Register

Each task gets a copy of the relevant bitsin the global event register, when
monitored events occur. The bits are thus:

0x0001 == Touch 1 Pressed

0x0002 == Touch 1 Released

0x0004 == Touch 2 Pressed

0x0008 == Touch 2 Released

0x0010 == Light Sensor Enter Light State
0x0020 == Light Sensor Enter Normal State
0x0040 == Light Sensor Enter Dark State
0x0080 == Light Sensor 1 Light Blink
0x0100 == Light Sensor 2 Light Blinks
0x0200 == Counter 0 Over Limit

0x0400 == Counter 1 Over Limit

0x0800 == Timer O Over Limit

0x1000 == Timer 1 Over Limit

0x2000 == Timer 2 Over Limit

0x4000 == PBM essage Received

24

Event Sound
Feedback
Register

Contains a bit for each of the system events above, indicating whether or not that
event should generate the corresponding system sound when it occurs.

Output resources

The following table shows how shared output resources are constructed.

Bits Explanation
0x01 | MOTOR A
0x02 | MOTOR_B
0x04 | SOUND
0x08 | VLL OUT

For multiple access, the resources can be OR'’ ed together.

November 1999

Page 46 of 68

Scout SDK

User Guide & Reference

Scout SDK

Remote commands

The following table shows how remote control messages are constructed.

Bits Explanation

0x0000 | Key(s) released

0x0100 | PBMessage 1

0x0200 | PBMessage 2

0x0400 | PBMessage 3

0x0800 | Turn motor A onin forward direction
0x1000 | Turn motor B on in forward direction
0x2000 | Turn motor C on in forward direction
0x4000 | Turn motor A on in backwards direction
0x8000 | Turn motor B on in backwards direction
0x0001 | Turn motor C on in backwards direction
0x0002 | Select Program 1

0x0004 | Select Program 2

0x0008 | Select Program 3

0x0010 | Select Program 4

0x0020 | Select Program5

0x0040 | Stop the program and turn all motors off
0x0080 | Play asound

The _OUTPUT_ commands can be OR’ ed with the other commands (but only one command per output port).

November 1999

Page 47 of 68

230)
Usar Guide & Reference . Scout SDK

Assembly program structure templates

In order to produce structured programs even in assembly the following templates are supplied as a programming aid like
the structuring offered by SPIRIT.OCX. The examples start with a SPIRIT.OCX style code snippet using ‘PB’ as the object
name. If you do not know about SPIRIT.OCX, you can look at jvww.|egomindstorms.com/sdk jto see and download another
Software Developers Kit for SPIRIT.OCX. The SPIRIT.OCX SDK isintended for more detailed programming of the
LEGO MindStorms Robotics Invention System *RCX’ programmable brick and the LEGO Technic CyberMaster
programmable brick.

The program templates do not distinguish between short/long forms of the commands, where they exist. The smallest
programs are achieved by using the short form initially and then changing it to the long form if the assembler complains that
the relative address is out of range.

IF ... ENDIF

Structures like:

PB.If sl1, v1, relop, s2, v2
true code
PB. Endl f

Gets implemented as:

chk sl, vl, relop, s2, v2, endiflabel
{true code}
endi f | abel :

IF ... ELSE ... ENDIF

Structures like:

PB.If s1, v1, relop, s2, v2
true code

PB. El se
fal se code

PB. Endl f

Gets implemented as:

chk sl, vl, relop, s2, v2, elseiflabel
{true code}
jnmp endi f | abel
el sei fl abel
{fal se code}
endi f | abel :

WHILE ... ENDWHILE

Structures like:
PB. Wi le sl1, vl, relop, s2, v2

whi | e code
PB. EndWhi | e

November 1999 Page 48 of 68

http://www.legomindstorms.com/sdk

User Guide & Reference Scout SDK

Gets implemented as:

st artwhil el abel :
chk sl, vl, relop, s2, v2, endwhil el abe

{whi | e code}
jmp startwhil el abel
endwhi | el abel :
DO ... WHILE
A structure like:
PB. Do
whi |l e code

PB. Wi le s1, v1, relop, s2, v2

While not availablein SPIRIT.OCX it would be implemented as:

startwhil el abel :
{whi | e code}
chk sl, vl, relop, s2, v2, endwhil el abel
jmp startwhil el abel
endwhi | el abel :

DO ... UNTIL

Structures like:

PB. Do
until code
PB.Until s1, v1, relop, s2, v2

While not availablein SPIRIT.OCX it would be implemented as:

startuntill abel
{until code}
chk sl, vl1, opposite relop, s2, v2, enduntillabe
jnmp startuntill abel
enduntil | abel :

The opposite of ‘<’ is ‘>’ and the opposite of ‘=="is‘!=" and vice versa. An UNTIL loop executes until a condition is met
which can be useful sometimes.

FOREVER ... ENDLOOP

Structureslike:
PB. Loop 2, 0 * forever

| oop code
PB. EndLoop

Gets implemented as:
startforeverl abel :

{! oop code}
jnmp startforeverl abel

November 1999 Page 49 of 68

Usar Guide & Reference

Scout SDK

LOOP ... ENDLOOP

Structures like:

PB. Loop src, val

| oop code
PB. EndLoop
Gets implemented as:
setv | oopvarcounter, src, va

start!l oopl abel :
decvj n | oopvar count er, endl oopl abel
{l oop code}
jmp startl oopl abe
endl oopl abel :

SWITCH ... CASE ... ENDSWITCH

Structures like:

PB. Swi tch src, va
PB. Case val _1
case 1 code
br eak

PB. Case val _n
case n code
br eak
PB. Def aul t
default code
PB. EndSwi t ch

While not availablein SPIRIT.OCX it would be implemented as:

caselcheck:
chk SRC CON, val _1, EQ src, val,
{case 1 code}
jmp endswi t chl abel
case2check:

casencheck:
chk SRC CON, val _n, EQ src, val,
{case n code}
j mp endswi t chl abel

def aul t check: ; no check — always true

{default code}
endswi t chl abel

case2check

def aul t check

If fall-through behavior is wanted for some branches, one simply removes the ‘jmp endswitchlabel’ in the branch code.

November 1999

Page 50 of 68

User Guide & Reference Scout SDK

If the case values are ordered numerically and sequentially (or can be brought to be so) a more program space- and run time-
efficient scheme exists. It usesthedecvj n byte code.

PB. Swi tch src, val
PB. Case O:
case 0 code
br eak

PB. Case N
case n code
br eak
PB. Def aul t:
default code
PB. EndSwi t ch

While not availablein SPIRIT.OCX it would be implemented as:

setv casevar, src, val
decvj n casevar, caseOcode

decvj n casevar, caseNcode
jnmp def aul t code

caseOcode:
{case n code}
setv casevar, SRC CON, 0; restore case variable
j mp endswi t chl abel

caseNcode:

{case n code}
setv casevar, SRC CON, N, restore case variable
j mp endswi t chl abel
def aul t code: ; no check — always true
{default code}
setv casevar, SRC CON, N, restore case variable

endswi t chl abel :
If fall-through behavior is wanted for some branches, one simply removes the ‘jmp endswitchlabel’ commands.

Since the case works by decrementing the variable it may be necessary to reload the variable when exiting. Thiswill not
work with fall-through behavior, so using a separate variable for the switch statement expression is the best solution — it also
saves even more program space and run time.

ENTER EVENT CHECK ... EXIT EVENT CHECK

Structures like:

PB. Ent er Event Check src, val eventli st
non event code

PB. Exi t Event Check

While not availablein SPIRIT.OCX it would be implemented as:

none eventlist, exitlabel
st art event checkl abel :
{l oop code}
jmp st art event checkl abel
exi tl abel :
nonex

November 1999 Page 51 of 68

230)
Usar Guide & Reference Scout SDK

WAIT UNTIL EVENT

Structures like:
PB. Wi t Unti | Event src, val ‘ eventlist

While not availablein SPIRIT.OCX it would be implemented as:

mone src, val, there
her e: jnmp here
t here:

ENTER ACCESS CONTROL ... EXIT ACCESS CONTROL

The access control mechanism is not using a nesting approach, so one can change the access control during the program
execution. The exit access control command will remove all access control settings for that task.

A typical resume example can have the form:

resunel abel :
{resune or initialization code or none}
setp priority
nona resources, resunel abel

{application code using the listed resources}
nmonax

If theinitialization code is empty, then thisis a busy-wait for one or more resources. An abort on contention strategy can
have the form:

{resune or initialization code or none}
setp priority
nona resources, abortl abel
{application code using the listed resources}
nonax
{possibly a junp over the abort code}
abortl abel :
{cl ean up code}

The access controls can be nested or applied sequentially (since the exit command exits all access control).

SEMAPHORE BASED GUARDED ACCESS

By devoting aglobal variable to a semaphore (access guard), it is possible to provide secure and non-interruptible access to
shared variables, which the access control monitor does not cover.

sub sGet Serma
subv vSema, SRC CON, 1 ; try to get the semaphore

checksemal abel : ; test to see if the task got the senmaphore
chk SRC CON, 0, GI, SRC VAR, vSemm, gotsenal abel

sunv vSemm, SRC CON, 1 ; no success, so give it back

wai t SRC RAN, FR M5 100 ; wait randomly to prevent race-conditions
; on average, one will wait 50 ms.

subv vSemm, SRC CON, 1 ; then try to get the semaphore again

jnmp checksenal abel

got senal abel :
ends

November 1999 Page 52 of 68

User Guide & Reference Scout SDK

sub sRel easeSena
sumv vSema, SRC CON, 1
ends

The semaphore is used in the following manner:

calls sCetSem
{guar ded code}
calls sRel easeSemn

The program then waits in the first subroutine call until it gets the semaphore.

The three subroutines 29-31 implement this busy-wait semaphore functionality using global variables 0-2. The release part
must be programmed directly.

TIMEOUT

In order to timeout one or more events one needs atimer. If you also want to measure the time spent waiting for the
event(s), you need an extratimer or an extra variable.

M easuring timeout with an extra variable

tnrs Ti meout Ti mer, Src, Val ue ; say when
tnrz TinmeoutTinmer ; start now

none SRC CON, Events | Tineout Ti nerOverlLintEvent, EvO Tout Label

Not Yet EvOr Tout Label :
setv Ti neMeasureVar, SRC TIMER, Ti neout Ti ner
jmp Not Yet EvOr Tout Label

EvOr Tout Label :
; check to see if the event happened or it was a tinmeout
setv Event RegVar, SRC _EVENT, REG TASKEVENT
andv Event RegVar, SRC VAR, Events ; mask out the relevant events

; exit if zero i.e. no events
chk SRC CON, 0, NE, SRC VAR, EventVarReg, Tout Label

EvLabel :

{event handl i ng}
Tout Label :

M easuring timeout with an extra timer

tnrs Ti meout Ti mer, Src, Val ue ; say when
tnrz TimeoutTimer ; start now

tnmrs Ti neout MeasureTi ner, SRC_CON, 32767
tnrz Ti meout Measur eTi ner

none SRC CON, Events | TineoutTi nerOverlLimtEvent, there
her e: jnmp here
t here:

setv Ti meMeasur eVar, SRC Tl MER, Ti meout MeasureTi mer

EvOr Tout Label :
{as above}

November 1999 Page 53 of 68

230)
Usar Guide & Reference Scout SDK

Since timers are global, it may be better to use alocal variable, especially since writing to the variable during the wait
period is‘fre€’ if the program is not to do other important stuff during the wait. Also if you want to use the actual measured
period for later control, you will have to use an extra variable anyway.

Timeout without all the fuss
If the actual event, timeout or otherwise, is unimportant (the program just moves on to the next step), then a much simpler

programis possible:

tnrs Ti meout Ti mer, Src, Val ue ; say when
tnrz TinmeoutTinmer ; start now

mone SRC _CON, Events | TineoutTinerOverLimtEvent, there

her e: jmp here
there:

This program will ssmply wait until an event or the special timeout event happens, before moving on.

Timeout without timers
An even simpler approach is possible that does not use program timers at all:

mone SRC _CON, Events, Handl er

wai t Src, Val ue ;o wait for tineout here
nonex ; timeout expired
jnp Ski p

Handl er:

Ski p:

This program will simply abandon event monitoring on time-out and skip the event handling code.

November 1999 Page 54 of 68

User Guide & Reference . Scout SDK

General robotics programming topics

There are anumber of general areas that one needs to understand in order to control robotic inventions by means of
downloaded programs.

In general terms arobotic system is an invention that tries to achieve some goal by controlling actuators attached to output
ports while reading and reacting to sensors attached to input ports.

The main areas of interest then becomes:

1. Controlling outputs, typically motors but also sound and light units.

2. Reading and processing inputs.

3. Reacting to external events (as seen through the input sensors).

4. Providing a sensible program structure that will manage al of the above, while possibly meeting an overall goal.

The LEGO P-Bricks are multi-tasking which means that they can execute a number of individual and/or separate jobsin
parallel.

The preceding chapter has a number of examples of general structures (templates) to control the program flow.

Variables
Most programs require you to store and manipulate information for shorter or longer periods of time. In the LEGO P-Bricks
you can do that with variables.

Variables do not have to be alocated — there exist a fixed number of variables and the program has to decide which
variablesto use for what.

The program examples below show various uses of variables

#i ncl ude “Scout Def. h”

#defi ne GLOBAL_VAR 1 ; a global variable for
; sharing data between tasks
#defi ne LOCAL_VAR 10 ; a task-local variable
setv GLOBAL_VAR, SRC CON, 42 ; the ultimte answer

; make a | ocal copy
setv LOCAL_VAR, SRC VAR, GLOBAL_VAR
sunmy LOCAL_VAR, SRC CON, 22 ; add 22 (to get 64)
divv LOCAL_VAR, SRC CON, 8 ; divide by 8 (to get 8)
; add itself to itself
sumy LOCAL_VAR, SRC VAR, LOCAL_VAR

In addition to the commands shown above one can also subtract and multiply variables with a parameter, as well as getting
the absolute (positive) value of a number and performing bit wise logical operations on the variables.

The example shows an important aspect of the Scout: It has both global and local (to atask) variables. This meansthat a

task can use a set of variables for its own purposes without having to worry about the value being changed by another task
and then use the global variables for information sharing with other tasks.

November 1999 Page 55 of 68

230)
Usar Guide & Reference Scout SDK

Outputs

Outputs (motors) have a polarity (direction) and a power level when turned on.

When turned off, the output can be floating or actively braking. Floating means that you remove the power supply to the
output so that the robot/motor may continue on its own kinetic energy (inertia). Braking is when the output freezesin its
current state meaning that motors stop instantly.

In the assembler commands, motors are addressed as a bit-list, i.e. output 1 has the value 0x01, output 2 has the value 0x02
and output 3 has the value 0x04. Combinations of motors (if you want a command to apply to more motors) are achieved by
setting more bitsin the list.

The program examples below show various settings of the motors:

#i ncl ude “Scout Def . h”

pwr QUTLI ST_AB, SRC CON, 7 ; power level ranges fromO to 7
dir DI R_FWD, OUTLIST_A ; forward here

dir DI R_RWD, QUTLIST_B ; backwards here => spin round
out QUT_ON, QUTLI ST_AB ; go, go, go

The Scout also has some master control commands (assembler commands starting with *g'), which work similarly to these.

Speaker
A specia output device is the integrated speaker, which can either play individual notes (given explicitly or read from a
variable) or some of the built-in system sounds.

The resolution of notesis 10 ms (system sounds have fixed duration). Frequencies are given in hertz (Hz).

The program examples below show how to play various sounds:

#i ncl ude “Scout Def. h”
playt TONE_A5, FR SEC 1

pl ays SND_ERROR

#defi ne TONE_VAR 2
setv TONE_VAR, SRC CON, TONE_A5
mul v TONE_VAR, SRC CON, 2 ;. ‘A raised an octave
playv TONE_VAR, FR_Ms 500 ; Just half a second, please

The Scout does not buffer notes or system sounds, so it may be necessary to insert special wait commands to get the timing
right if you want to recreate a tune.

Display

User programs cannot control the display on the Scout. In power mode (where the user can download programs) it will
display afolder icon if there isatask O that can be started running.

While running, a series of icons will be animated as visual feedback.

During download of programs, another set of icons will be animated.

November 1999 Page 56 of 68

User Guide & Reference . Scout SDK

I nputs

The Scout has two external input ports to which touch sensors can be attached. The special color-coded ID touch sensors
can also be used — they will automatically be detected by the Scout operating system. There is athird built-in input, which is
alight sensor.

Inputs are typically read and stored in variables or used in comparisons for making decisions about program execution.

The program examples below show how to read and use sensor values:

#i ncl ude “Scout Def . h”

#def i ne SENSOR_VAR 16
setv SENSCR VAR, SRC _SENVAL, SEN TCUCH1L
chk SRC_CON, TVAL_PRESSED, EQ SRC VAR, SENSCR VAR, Rel easedLabel

PressedLabel :
{what to do when the touch sensor is pressed}
jmp But t onFi ni shLabel

Rel easedLabel :
{what to do when the touch sensor is not pressed}

But t onFi ni shedLabel :

Instead of reading and storing the sensor value in a variable, one could ask the command to use the sensor value directly
instead of avariable. Thislooks like:

chk SRC _CON, TVAL_PRESSED, EQ SRC SENVAL, SEN TOUCHl, Rel easedLabel

For detailed information about where one can use what input sources and what val ues are within range for that input source,
see the firmware and stand-al one mode specification document.

Events

The Scout firmware operating system has been extended to generate ‘events' when important things happen. This can
relieve the application from repeated testing for the situations directly and thus bring down both program size and system
load.

Physical events

Physical events occur when the environment changes such as when a touch sensor (button) is pressed and released, when
the light in the room is turned on and off, when alight is flashed into the light sensor a number of times, or when a message
from another P-Brick is received.

Virtual events
Virtual events are events controlled by the downloaded programs. The program can set up timers and (score) counters.
When atimer or counter reaches a predefined value, it generates an event (and the timer resets).

Handling events

It is always possible to see what events atask has received by looking at the TaskEventRegister (source type 23) and take
appropriate actions.

The program can also wait for a specific event to happen before moving on.

Lastly it is possible to instruct the firmware operating system to start monitoring for specific events and then interrupt the

task when they occur (after which the execution will continue at a predefined place in the program). See the “ENTER
EVENT CHECK ...” and “ENTER ACCESS CONTROL ...” templates for specific information.

November 1999 Page 57 of 68

230)
Usar Guide & Reference . Scout SDK

Structured design
Before writing any program, it is always useful to try to sketch out what the program is supposed to do, typically in the form
of statements about normal behavior and what to do in case of external events.

Conditional behavior

If the behavior of the program is dependent on some external (a button being pressed or the light level being above a certain
threshold) or internal (a variable having a certain value) condition, one should usethe “IF ... THEN ... [ELSE ...] ENDIF"
template in the preceding chapter.

Repeated behavior
If the program needs to repeat a behavior a number of times or until a certain condition is fulfilled, one should use one of
the LOOP, WHILE or UNTIL templatesin the preceding chapter.

Interruptible behavior

Sometimesit is desirable to be able to react to external eventsimmediately, without having to check for the situation
continuously. To do this, the firmware operating system provides two different kind of ‘ monitors’. One monitor checks for
events as described above, and the other monitor checks for access control to shared resources.

When an event happens (out of a program-selected set) or aresource is taken by another task with equal or higher priority,
the normal program execution is stopped and restarted at a (different) program selected address, where proper action can be
taken.

For these kinds of behavior, usethe “ENTER EVENT CHECK ... EXIT EVENT CHECK” and “ENTER ACCESS
CONTROL ... EXIT ACCESS CONTROL” templates in the preceding chapter.

Multi-tasking

The LEGO P-Bricks are multi-tasking which means that they can execute the tasks in the downloaded user programsin
parallel. This enables the program to be broken up in independent chunks that each perform some piece of functionality and
then interact with each other to deliver the overall performance.

The firmware operating system then executes commands in turn from the downloaded and active tasks. Each individual
command is allowed to execute to completion before the operating system moves on to the next task or its own
housekeeping activities. A task is activeif it has been started and is not suspended by a wait command or is waiting for
some event. The only task that is started when the green RUN button is pressed is task 0 —if more tasks are required, they
must be started explicitly, either directly from task O or by a series of direct commands.

By breaking down a program in smaller pieces, each piece becomes easier to understand. The hard part is then to ensure that
they interact correctly. Interaction is done by means of communication and synchronization.

Synchronization
For intra-task synchronization, one should use the monitors mentioned above — they also provide a form of inter-task
synchronization.

For the most general form of inter-task synchronization, one has to use global variables. Since global variables are just that,
global, care must be exercised when using them. The SEMAPHORE template shown in the preceding chapter provides a
good safe access mechanism without the possibility of corrupting important data that other tasks may be using.

Task-to-task synchronization then consists in deciding a communication protocol using shared memory in the form of
global variables.

A PC-to-P-Brick synchronization protocol is slightly more complex because the PC has to implement the SEMAPHORE
schemein its application asit cannot call subroutines directly. Since the PC is aways Master (and the P-Brick is aways
Slave) in any communication one can implement a similar scheme using two global variables, one for flow control and one
for data (the variables must be global asthe PC cannot access variables that are local to atask).

November 1999 Page 58 of 68

User Guide & Reference . Scout SDK

Distributed systems
More complex systems can be constructed by programming several LEGO P-Bricks and having them exchange information
by sending messages to each other. The same principles as above apply, only on a system-wide basis.

Communication
Messages are sent using the msg command.

When a message is received it generates an event. The actual value can be accessed using SOURCE 15.
When processed, the message buffer should be reset with the msgz command.

The message buffer is shared and global, so alittle care should be exercised when using it.

November 1999 Page 59 of 68

230)
Usar Guide & Reference . Scout SDK

Program Block Library (subroutines)

The Scout has an extensive subroutine library of general-purpose functions that can help reduce the size of downloaded user
programs. Many of the subroutines expect parameters to be passed in local variables as outlined below.

The built-in subroutines are numbered 3-32 whereas user subroutines are numbered 0-2.

3 —MotorDriveSub (IvType)

Parameters: IvType: 0: A Fwd, BFwd 5: A Rwd, B Off 9: C Fwd (LocalVarl)
1: ARwd, BRwd 6: A Off, B Fwd 10: C Rwd
2:AFwd, BRwd 7: A Off, BRwd 11: C Off
3: A Rwd, BFwd 8: A Off, B Off

4: A Fwd, B Off
Resources: IvType 0-8: Motor A, Motor B, IvType 9-11: VLL
Description: Set Motor AB or Motor C according to IvType. All local variables are preserved by the sub.

4 —BasicMotionSub (IvType, IvTime)

Parameters: IvType: 1: Forward 2. ZigZag (LocalVarl)
3: CircleRight 4: CircleLeft
5: LoopA 6: LoopB
7. LoopAB
IvTime; 1-32767 (LocalVar2)
Resources: Motor A, Motor B
Description: Performs one loop of the basic motion types. IvTime sets the duration of each step in the motion.

All local variables are preserved by the sub.

5—AvoidSub (IvType, IVTime)

Parameters: IvType: 0: AvoidLeft (LocalVarl)
1: AvoidRight
IvTime; 1-32767 (LocalVar2)
Resources: Motor A, Motor B, VLL
Description: Performs the avoid sequence avoiding right or left. Avoiding right has random turn time.

IvTime, IvType and LocalVar4-8 are preserved by the sub.

6 — MovementsSub (IvType, IVTime)

Parameters: IvType: 0: Dance (LocalVarl)
1: Bug
2: Random
3: Jditter
IvTime; 1-32767 (LocalVar2)
Resources: Motor A, Motor B, VLL, Sound

November 1999 Page 60 of 68

User Guide & Reference . Scout SDK

Description:

Performs movement sequences and plays sounds.
IvTime and Local Var4-8 are preserved by the sub.

7 — GetAveragelLightSub ()

Parameters:
Resources.

Description:

None
None

Measures the light level averaged over 5 samplesand returnsit in lvAvrLight (LocalVarl)
LocalVar4-8 is preserved by the sub.

8 — AutoAdjustLightSub (IvCenterLight, IVThPercent, IvH Percent)

Parameters:

Resources:

Description:

IvCenterLight 1-1020 (LocalVarl)
IvThPercent 0-100 (LocalVar2)
IvHPercent 0-100 (LocalVar3)
None

Set LT, UT and H for the light sensor around IvCenterLight according to IvThPercent and
IvHPercent.
IvCenterLight, IvThPercent, IvHPercent and LocalVar5-8 are preserved by the sub.

9 — SeekSub (IvType, IVTime)

Parameters:

Resources:

Description:

IvType: 0: SeekDark (LocalVarl)
1: SeekLight
IvTime; 1-32767 (LocalVar2)

Motor A, Motor B, Sound

Finds the direction of lowest or highest light intensity.
IvTime and Local Var6-8 are preserved by the sub.

10 — FindBrightSub (IvBrightTH, IvBrightSteps)

Parameters:

Resources:

Description:

IvBrightTH: 1-1020 (LocalVarl)
IvBrightSteps: 1-32767 (LocalVar2)

Motor A, Motor B, Sound

Finds the direction with alight level lower than IvBrightTH. Samples IvBrightSteps times.
IvBrightTH and LocalVar5-8 are preserved by the sub.

11 — GetMotor StatusSub ()

Parameters:
Resources.

Description:

November 1999

None
None
Gets the immediate state of motors A and B. StatusA returned in LocalVarl, StatusB in

LocalVar2. Status: 0: Off, 1: Fwd, 2: Rwd.
LocalVar3-8 are preserved by the sub.

Page 61 of 68

230)
Usar Guide & Reference . Scout SDK

12 —Motor2SoundSub (IvStatusA, IvStatusB)

Parameters:

Resources:

Description:

IvStatusA: 0-2 (LocalVarl)
IvStatusB: 0-2 (LocalVar2)
Sound

Plays a system sound according to lvStatusA and lvStatusB.
All local variables are preserved by the sub.

13— LightGeiger Sub (IvintgLimit)

Parameters:
Resources:

Description:

IvintgLimit: 1-32767 (LocalVarl)
Sound

Enterslooping forever playing a sequence of beeps at a rate proportional to the light level.

In the loop (kLightOffset — LightValue) will be added to the integrator followed by a 10ms Wait.
If the integrator exceeds lvintgLimit atone of kGeigerL2F * (kToneOffset — LightVaue) Hz is
played for 10ms and the integrator is reset.

IvintgLimit and LocalVar4-8 are preserved by the sub.

14 — FwdSub (IvDuration, IvTaskFlags)

Parameters:

Resources:

Description:

IvDuration: -32768 -32767 (LocalVarl)
IvTaskFlags: Bit15: 0-1 (LocalVar8)

Motor A, Motor B
If Bit15inlvTaskFlagsis set Access Control is set up.

Sets up motor control: MotorA Fwd, MotorB Fwd.
After motor control is set up, the duration of the Sub is determined:

IvDuration
>0 A Wait of lvDuration* 10msis performed
<0 IvDuration is treated as an event list and a WaitUntilEvent is performed
=0 Enters Looping forever

IvDuration and LocalVar3-8 are preserved by the sub.

The following subs works in the same way as FwdSub, but set up different motor control:

15 — RwdSub (IvDuration, IvTaskFlags)

MotorA Rwd, MotorB Rwd

16 — SpinRightSub (lvDuration, IvTaskFlags)

MotorA Fwd, MotorB Rwd

17 — SpinLeftSub (IvDuration, IvTaskFlags)

MotorA Rwd, MotorB Fwd

18 — FwdTurnRightSub (IvDuration, IvTaskFlags)

November 1999

Page 62 of 68

User Guide & Reference .

Scout SDK
MotorA Fwd, MotorB Off
19 — RwdTurnLeftSub (IvDuration, IvTaskFlags)
MotorA Rwd, MotorB Off
20 — FwdTurnLeftSub (IvDuration, IvTaskFlags)
MotorA Off, MotorB Fwd
21 — RwdTurnRightSub (IvDuration, IvTaskFlags)
MotorA Off, MotorB Rwd
22 — ZigZagSub (IvDuration, IvTime, IvTaskFlags)
Parameters: IvDuration: -32768 -32767 (LocalVarl)
IvTime: 1-32767 (LocalVar2)
IvTaskFlags: Bit15: 0-1 (LocalVar8)
Resources: Motor A, Motor B
Description: If Bitl5inlvTaskFlagsis set Access Control is set up.
Does the ZigZag motion with IvTime between the steps.
IvDuration
>0 ZigZag lvDuration times (loop)
<0 IvDuration is treated as an event list and the ZigZag is performed until
the event happens
After expired duration Motor A and B are floated
=0 ZigZags forever
IvDuration, IvTime and LocalVar5-8 are preserved by the sub.
23 — CircleRightSub (lvDuration, IvTime, IvTaskFlags)
Parameters: IvDuration: -32768 -32767 (LocalVarl)
IvTime: 1-32767 (LocalVar2)
IvTaskFlags: Bit15: 0-1 (LocalVar8)
Resources: Motor A, Motor B
Description: If Bitl5inlvTaskFlagsis set Access Control is set up.
Does the CircleRight motion with IvTime between the steps.
IvDuration
>0 Repeats CircleRight step IvDuration times (loop)
<0 IvDuration istreated as an event list and the CircleRight step is performed until

the event happens
After expired duration Motor A and B are floated
=0 Repeats CircleRight steps forever
IvDuration, IvTime and LocalVar5-8 are preserved by the sub.

24 — CircleLeftSub (IvDuration, IvTime, IvTaskFlags)

Parameters: IvDuration: -32768 -32767 (LocalVarl)
IvTime; 1-32767 (LocalVar2)
IvTaskFlags: Bit15: 0-1 (LocalVar8)
November 1999

Page 63 of 68

230)
Usar Guide & Reference . Scout SDK

Resources:

Description:

Motor A, Motor B

If Bitl5inlvTaskFlagsis set Access Control is set up.
Does the CircleLeft motion with [vTime between the steps.

IvDuration
>0 Repeats CircleL eft step IvDuration times (loop)
<0 IvDuration is treated as an event list and the CirclelLeft step is performed until

the event happens
After expired duration Motor A and B are floated
=0 Repeats Circlel eft steps forever
IvDuration, IvTime and LocalVar5-8 are preserved by the sub.

25 — AvoidRightSub (IvMovTime, IvTaskFlags)

Parameters:

Resources:

Description:

IvMovTime: 1-32767 (LocalVarl)
IvTaskFlags: Bit15: 0-1 (LocalVar8)

Motor A, Motor B
If Bitl5inlvTaskFlagsis set Access Control is set up.

Does the AvoidRight motion with IvMovTime between the steps.
All local variables except LocalVar2 are preserved by the sub.

26 — AvoidLeftSub (IvMovTime, IvTaskFlags)

Parameters:

Resources:

Description:

IvMovTime: 1-32767 (LocalVarl)
IvTaskFlags: Bit15: 0-1 (LocalVar8)

Motor A, Motor B
If Bitl5inlvTaskFlagsis set Access Control is set up.

Does the AvoidLeft motion with IvMovTime between the steps.
All local variables except LocalVar2 are preserved by the sub.

27 — BugshakeSub (IvMovTime, IvTaskFlags)

Parameters:

Resources:

Description:

IvMovTime: 1-32767 (LocalVarl)
IvTaskFlags: Bit15: 0-1 (LocalVar8)

Motor A, Motor B
If Bit15inlvTaskFlagsis set Access Control is set up.

Does the Bugshake motion with [vMovTime between the steps.
All local variables except LocalVar2 are preserved by the sub.

28 — LoopABSub (IvMovTime, IvTaskFlags)

Parameters:

Resources:

Description:

November 1999

IvMovTime: 1-32767 (LocalVarl)
IvTaskFlags: Bit15: 0-1 (LocalVar8)

Motor A, Motor B
If Bitl5inlvTaskFlagsis set Access Control is set up.

Does the LoopAB motion with IvMovTime between the steps.
All local variables except LocalVar2 are preserved by the sub.

Page 64 of 68

User Guide & Reference . Scout SDK

29 — GetSema0Sub ()

Parameters: None
Resources: None
Description: Try to get access to a resource through gvSema0.

All local variables are preserved by the sub.

The following subs works in the same way as GetSema0Sub, but uses different global variables:

30 — GetSemalSub ()

Uses GlobaVarl.

31 - GetSemalSub ()

Uses GlobaVarl.

32— InitSysSub ()

Parameters: None
Resources: None
Description: Initializes system registers.

All local variables are preserved by the sub.

November 1999 Page 65 of 68

Usar Guide & Reference

Scout SDK

VLL Command Set

The VLL command set consists of 128 distinct byte codes. Each code isinterpreted in the receiving device and can have
different meaningsin each device. A convention has been made though to have separate code groups for motor commands
and sound commands. For the MicroScout, ‘D’ signifies Direct commands and ‘S’ signifies Scripting commands.

November 1999

VLL code Code Pilot MicroScout

0 Motor Forward D: Motor Forward

1 Motor Reverse D: Motor Reverse

2

3

4 Sound (Valve) D:Beep 1

5 Sound (Helicopter) D: Beep 2

6 Sound (Truck) D: Beep 3

7 Sound (Robot) D: Beep 4

8 Sound (Machine) D: Beep 5

9 Sound Mute

10 Motor Stop D: Motor Stop

11 Motor & Sound

12 Fixed Prgm Truck

13 Fixed Prgm Wheel Driver

14 Fixed Prgm Crash Buggy

15 Fixed Prgm Robot

16 S: Motor Forward 0.5
17 S: Motor Forward 1.0
18 S: Motor Forward 2.0
19 S: Motor Forward 5.0
20 S: Motor Reverse 0.5
21 S: Motor Reverse 1.0
22 S: Motor Reverse 2.0
23 S: Motor Reverse 5.0
24 S: Beep 1

25 S: Beep 2

26 S: Beep 3

27 S: Beep 4

28 S: Beep 5

29 S: Wait for Light

30 S: Seek Light

31 S: Code

32 S: Keep Alive

33 D: Run

34 D: Delete Script

35

36

37

38

39

40

41

42

43

44

45

46

Page 66 of 68

User Guide & Reference

Scout SDK

November 1999

VLL code

Code Pilot

MicroScout

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

D: Next

71

D: Reset

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

Touch In

97

Touch Out

98

99

ToneC

100

Tone C#

Page 67 of 68

Usar Guide & Reference

Scout SDK

November 1999

VLL code Code Pilot MicroScout
101 ToneD

102 Tone D#

103 ToneE

104 ToneF

105 Tone F#

106 Tone G

107 Tone G#

108 Tone A

109 Tone A#

110 Tone H (B)

111 ToneC

112 Number O

113 Number 1

114 Number 2

115 Number 3

116 Number 4

117 Number 5

118 Number 6

119 Number 7

120 Number 8

121 Number 9

122 Decimal dot

123 Random

124 Speed/Torque Low (20)
125 Speed/Torque Med (40)
126 Speed/Torque High (60)
127 Tacho

Page 68 of 68

	Foreword
	SOFTWARE DEVELOPER KIT LICENSE AGREEMENT AND WARRANTY DISCLAIMER
	Table of Contents
	Introduction
	Pre-requisites
	Document structure

	The Scout – brief description
	The Scout brick seen from the outside
	Output ports with LED indicators
	Touch sensor ports with LED indicators
	Build-in light input with LED indicator
	VLL output
	IR transceiver with LED indicator
	Buttons: ON/OFF, Select, Change, Run
	LCD display
	Sound output

	Inside the Scout: Basic functionality
	Stand Alone Mode
	Power Mode
	The Scout and the LEGO Remote

	Firmware system design - overview
	The Operating System
	The Program System
	System overview
	Resources available to the user
	Scout events
	Scout access control
	Communicating with the Scout

	The Program Block Library

	Installation
	Package content

	Getting started – ScoutDOS.exe
	Program arguments – example session
	Example programs
	Hello World
	Repeat after me
	Watch your step

	Getting started – ScoutTool.exe
	Advanced Monitoring

	Program syntax
	Commands
	Labels
	Comments
	Structures
	Pre-processor directives
	Mixing programs with direct commands
	Parameters
	Instructions/opcodes
	Opcode ‘absv’
	Opcode ‘andv’
	Opcode ‘boot’
	Opcode ‘calls’
	Opcode ‘chk’
	Opcode ‘chkl’
	Opcode ‘cntd’
	Opcode ‘cnti’
	Opcode ‘cnts’
	Opcode ‘cntz’
	Opcode ‘decvjn’
	Opcode ‘decvjnl’
	Opcode ‘dels’
	Opcode ‘delt‘
	Opcode ‘dir’
	Opcode ‘divv’
	Opcode ‘event’
	Opcode ‘gdir’
	Opcode ‘gout’
	Opcode ‘gpwr’
	Opcode ‘jmp’
	Opcode ‘jmpl’
	Opcode ‘light’
	Opcode ‘lsbt’
	Opcode ‘lscal’
	Opcode ‘lsh’
	Opcode ‘lslt’
	Opcode ‘lsut’
	Opcode ‘monal’
	Opcode ‘monax’
	Opcode ‘mone’
	Opcode ‘monel’
	Opcode ‘monex’
	Opcode ‘msg’
	Opcode ‘msgs’
	Opcode ‘msgz’
	Opcode ‘mulv’
	Opcode ‘offp’
	Opcode ‘orv’
	Opcode ‘out’
	Opcode ‘ping’
	Opcode ‘plays’
	Opcode ‘playt’
	Opcode ‘playv’
	Opcode ‘pollm’
	Opcode ‘pollp’
	Opcode ‘pwr’
	Opcode ‘remote’
	Opcode ‘rules’
	Opcode ‘scout’
	Opcode ‘setfb’
	Opcode ‘setp’
	Opcode ‘setv’
	Opcode ‘sgnv’
	Opcode ‘sound’
	Opcode ‘start’
	Opcode ‘stop’
	Opcode ‘subv’
	Opcode ‘sumv’
	Opcode ‘tmrs’
	Opcode ‘tmrz’
	Opcode ‘tout’
	Opcode ‘txs’
	Opcode ‘vll’
	Opcode ‘wait’

	Virtual machine specifics
	Sources

	Assembly program structure templates
	IF … ENDIF
	IF … ELSE … ENDIF
	WHILE … ENDWHILE
	DO … WHILE
	DO … UNTIL
	FOREVER … ENDLOOP
	LOOP … ENDLOOP
	SWITCH … CASE … ENDSWITCH
	ENTER EVENT CHECK … EXIT EVENT CHECK
	WAIT UNTIL EVENT
	ENTER ACCESS CONTROL … EXIT ACCESS CONTROL
	SEMAPHORE BASED GUARDED ACCESS
	TIMEOUT
	Measuring timeout with an extra variable
	Measuring timeout with an extra timer
	Timeout without all the fuss
	Timeout without timers

	General robotics programming topics
	Variables
	Outputs
	Speaker
	Display
	Inputs
	Events
	Physical events
	Virtual events
	Handling events

	Structured design
	Conditional behavior
	Repeated behavior
	Interruptible behavior

	Multi-tasking
	Synchronization

	Distributed systems
	Communication

	Program Block Library (subroutines)
	3 – MotorDriveSub (lvType)
	4 – BasicMotionSub (lvType, lvTime)
	5 – AvoidSub (lvType, lvTime)
	6 – MovementsSub (lvType, lvTime)
	7 – GetAverageLightSub ()
	8 – AutoAdjustLightSub (lvCenterLight, lvThPercent, lvHPercent)
	9 – SeekSub (lvType, lvTime)
	10 – FindBrightSub (lvBrightTH, lvBrightSteps)
	11 – GetMotorStatusSub ()
	12 – Motor2SoundSub (lvStatusA, lvStatusB)
	13 – LightGeigerSub (lvIntgLimit)
	14 – FwdSub (lvDuration, lvTaskFlags)
	15 – RwdSub (lvDuration, lvTaskFlags)
	16 – SpinRightSub (lvDuration, lvTaskFlags)
	17 – SpinLeftSub (lvDuration, lvTaskFlags)
	18 – FwdTurnRightSub (lvDuration, lvTaskFlags)
	19 – RwdTurnLeftSub (lvDuration, lvTaskFlags)
	20 – FwdTurnLeftSub (lvDuration, lvTaskFlags)
	21 – RwdTurnRightSub (lvDuration, lvTaskFlags)
	22 – ZigZagSub (lvDuration, lvTime, lvTaskFlags)
	23 – CircleRightSub (lvDuration, lvTime, lvTaskFlags)
	24 – CircleLeftSub (lvDuration, lvTime, lvTaskFlags)
	25 – AvoidRightSub (lvMovTime, lvTaskFlags)
	26 – AvoidLeftSub (lvMovTime, lvTaskFlags)
	27 – BugshakeSub (lvMovTime, lvTaskFlags)
	28 – LoopABSub (lvMovTime, lvTaskFlags)
	29 – GetSema0Sub ()
	30 – GetSema1Sub ()
	31 – GetSema1Sub ()
	32 – InitSysSub ()

	VLL Command Set

